
Mapping the Digital Divide:
Before, During, and After COVID-19

Francesco Bronzino Nick Feamster, Shinan Liu, James Saxon Paul Schmitt
Université Savoie Mont Blanc University of Chicago Princeton University

Abstract
Thedigitaldivide—and, inparticular, thehomeworkgap—

have been exacerbated by the COVID-19 pandemic, laying
bare not only the inequities in broadband Internet access but
also how these inequities ultimately affect citizens’ ability
to learn, work, and play. Addressing these inequities ulti-
mately requires having holistic, “full stack” data on the na-
ture of the gaps in infrastructure and uptake—from the phys-
ical infrastructure (e.g., fiber, cable) to speed and application
performance to affordability and neighborhood effects that
ultimatelyaffectwhethera technology isadopted. Thispaper
surveys how various existing datasets can (and cannot) shed
light on these gaps, the limitations of these datasets, whatwe
knowfromexistingdataabouthowthe Internet responded to
shifts in traffic during COVID-19, and—importantly for the
future—what data we need to better understand these prob-
lemsmoving forward and how the research community, pol-
icymakers, and the public might gain access to various data.

1 Introduction
TheFederalCommunicationsCommission (FCC)has reg-

ularly suggested that educational and economic opportunity
increasingly depends on the availability of affordable, high-
speed Internet access. One aspect of this is the “homework
gap”, referring to the barriers that students face when work-
ing on homework assignments without reliable Internet ac-
cess at home. As schools increasingly incorporate Internet-
based learning into the curriculum, students become increas-
ingly dependent on reliable Internet access to succeed.

In 2009, the FCC’s Broadband Task Force reported that
about 70% of teachers assign homework that require access
to broadband Internet access, and that about 65% of students
use the Internet at home to complete their homework, includ-
ing submittingassignments,workingonsharedprojects, and
communicating with teachers. As of 2018, 24 million Ameri-
cans have no access at all to high-speed Internet access, and
12 million Americans face the so-called homework gap; 25%
ofUShouseholdswith children under 8 years old donot have

access to broadband Internet access. Many of those who do
have access do not have access to unlimited Internet access
plans.

With the rise of the COVID-19 pandemic, the problem
has never been more immediate or important: Questions
of inequity have become more acute in recent months, as a
global pandemic has caused shifts in patterns of education,
work, and life that involve increased dependency on high-
speed broadband Internet access from home—for example,
with increased dependence on remote learning and remote
caregiving—at the very time that the network itself is experi-
encing increased load.

An important step towards addressing this inequity in-
volves developing a deep, holistic understanding of avail-
able broadband Internet access in the United States. Beyond
simply “speed tests”, reliable, usable Internet access depends
on a holistic set of factors, including (1) physical connectiv-
ity (location of fiber and cable); (2) network throughput, la-
tency, and packet loss; (3) application performance metrics;
(4) other various non-technical data, including pricing data,
information about subscription rates, penetration, and adop-
tion, and so forth.

First, we explore the current nature of these metrics, sur-
veying theavailabledata sourceson these topicsaswell as the
various shortcomings of various datasets. We focus on the
current state of various data sources, including the state of
physical connectivity, network throughput andperformance
metrics, interconnectionmeasurements, andapplicationper-
formance metrics, noting in particular what these datasets
can—and cannot—tell us about the current state of the digital
divide.

Second,with the abovemetrics and analysis on historical
data as a baseline, the second part of the paper explores how
the Internet responded under unprecedented shifts in traffic
load as a result of the COVID-19 pandemic. We study the ef-
fects of the shifts in traffic load resulting from the COVID-19
pandemic on network utilization and network performance,
noting how various aspects of the network infrastructure
adapted to shifts in traffic load during COVID-19.
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Third,wehighlight gaps in existingdatasets, inparticular
how existing public datasets do not shed light on application
quality of experience and, ultimately, user experience. To-
wards filling this gap, we proposemechanisms for gathering
data along these dimensions, first at a hyper-local, neighbor-
hood level, but ultimately with an eye towards scaling up a
national infrastructure that can provide a more holistic view
into these dimensions.

2 HowWeMap Internet Coverage
The coronavirus pandemic forced daily routines into vir-

tual spaces. As both work and learning went remote, policy-
makers around the country have sought to address ongoing
inequities in Internet connectivity, suddenlymoreacute than
ever. Data sources on Internet connectivity have substantial
limitations in measuring inequity. In this Section, we high-
light these limitations while demonstrating what can never-
theless be done with the data.

2.1 ExistingMetrics
Various metrics exist on the state of broadband Internet

connectivity. Each of thesemetrics provides a partial viewof
the state of connectivity—or, in some cases, lack thereof. We
briefly survey thesemetrics below, organizing the discussion
into (1) performancemeasurements (ofwhich speed tests are
perhaps the most common instance); and (2) survey-based
methods.

2.1.1 PerformanceMeasurements

A common way to measure Internet connectivity is via per-
formance measurements. There are various types of perfor-
mancemeasurements: themost common of these are “speed
tests”, which actively measure the performance of the net-
work, in many cases by saturating a network link. Speed
tests can be router-based or client-based; client-based speed
tests can be browser-based or native. Most commonly, speed
testsmeasurenetwork characteristics such as throughput, la-
tency, and packet loss. Some speed tests also measure the
performance of specific applications, such as web page load
time or video streaming, although those types of tests are
typically less common in active speed testing applications.

Router-based speedtests, which measure the perfor-
mance of the network directly from the router—particularly
those that use multiple connections to test the throughput
of the connection—typically produce more accurate results
and are now a commonly accepted standard way of measur-
ing the performance of the access ISP. These tests were pi-
oneered in 2010 and remain the standard measurement ap-

proach of the Federal Communication Commission’s Mea-
suringBroadbandAmerica (MBA)program. Measuring from
the routermitigates someof theproblemsof client-based test-
ing

2.1.2 PassiveQualityMeasurements

In addition to speed tests, an emerging class of performance
measurements are passive application performance infer-
ence tools, which passively survey network traffic and infer
the quality of experience of an application based on various
properties of the traffic (e.g., segment arrival time, down-
stream throughput utilization). Quality of experience met-
rics generally entail the following four quality of experience
metrics: (1) startup delay, or the time to start playing the
video; (2) rebuffering, or whether the video has experienced
an interruption in playback; (3) video resolution; (4) changes
in resolution. The last two metrics concerning resolution
are related, although because the problem is based on sta-
tistical inference, sometimesmodels canmore accurately de-
tect a change in resolution than the actual resolution (or vice
versa).

Passive measurement techniques introduce various
tradeoffs. On the one hand, because they involve inferring
performance directly from existing network traffic, they can
provide an accurate reflection of the performance of appli-
cations as they are actually used, as well as an estimate of
quality parameters that correspond to the performance of
that application. The passive nature of the measurements
also eschews the need for bespoke active measurement tests
that are specific to applications (e.g., web, streaming video,
gaming), as well as dedicated test infrastructure for each of
those tests that is representative of the user experiencewhen
using those applications. On the other hand, these methods
face various deployment barriers, as we discuss in the subse-
quent section.

2.1.3 Interconnection Data

Previous efforts have made it possible to explore utilization
of Internet interconnection points between access ISPs and
content providers. In particular, previouswork has analyzed
the utilization and provisioning of interconnectionmeasure-
ment points using IPFIX-based traffic measurements and
SNMP polling data, respectively. Data from the Intercon-
nectionMeasurement Project in particularmakes the follow-
ing statistics available: (1) timestamps at five-minute inter-
vals; (2) geographic region; (3) anonymized partner network
(e.g., content deliverynetwork, application serviceprovider);
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(4) access ISP; (5) total ingress bytes; (6) total egress bytes;
(7) capacity.

Such data makes it possible to observe both utilization
rates and how ISPs have provisioned and augmented capac-
ity over various periods of time. The data provides helpful
perspective in understanding the extent to which provision-
ing between access ISPs and peer networks is sufficient to
sustain traffic demands, as well as how providers have re-
sponded over time to increases in traffic demands. As we
will see in Section 3, this data provides helpful perspective in
understanding how certain service providers responded in
the face of considerable shifts in traffic demands as a result
of the COVID-19 pandemic.

2.1.4 Surveys

In theAmericanCommunitySurvey (ACS) theUSCensusBu-
reau asks respondents whether they have broadband Inter-
net; for the National Telecommunications and Information
Administration (NTIA) supplement to the Current Popula-
tion Survey (CPS), they gather both data on connectivity and
online behaviors. While the US Census Bureau is the ”gold
standard” of surveymethodology, the question of broadband
access is coarse: the presence of a nominal, 25/3 Mbps con-
tract. Wealthy Americans have enjoyed higher bandwidths
over time; it is not possible to understand relative changes
on the intensive margin (consumption or bandwidth) using
the ACS or the CPS. Unfortunately, subtlety is not required:
neighborhoodeconomic indicators are stronglypredictive of
broadband contracts. In Chicago for instance, the tract-level
correlation between log median household income and the
share of householdswith a broadband contract is 0.82, as can
be seen in Figure 1. The CPS/NTIA data are not designed for
use below the state-level, but microdata allow breakdowns
by race, ethnicity, and poverty status.

2.2 Limitations of ExistingMethods
The existing methods for characterizing access network

performance face various limitations. We now survey vari-
ous limitations concerning test methods, sampling, and de-
ployment barriers.

2.2.1 Test Environment andMethods

Network environment. Client-based speed tests have a
number of limitations. One of those limitations is that, as ac-
cess network speeds have increased, the speed test itself is
less likely to be measuring the speed of the access link, and
far more likely to be measuring the speed of some other as-
pect of the end-to-end path, as other elements along the net-
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Figure 1: Census tract median household income versus share of
households with broadband Internet, in Chicago. A lowess curve is
drawn. The linear correlation is 0.82.

workpath introduceperformancebottlenecks. Somenotable
issues include the following:

• At speeds above 100–200 Mbps, browser-based
speedtests can produce inaccurate results, due to the
fact that the browser itself becomes a performance bot-
tleneck.

• On older phones, the cellular radio itself can introduce
a performance bottleneck, if the WiFi radio is not ca-
pable of transmitting at rates that exceed that of the
access network.

• In the case of a homenetwork, the homeWiFi network
itself can introduceperformancebottlenecksdue toold
equipment, a poorly placedWiFi access point, or other
factors.

Test design. The design of the test itself can also pose lim-
itations. The Network Diagnostic Test (NDT), used as the
underlying tool in the Measurement Lab tests, for example,
has longuseda singleTCPconnection to testnetwork speeds.
Such a test has failed to successfully saturate links as low as
10Mbps, particularly if the linkhasanyamountofpacket loss.
Despite the known shortcomings of the tool, it has continued
to be used in an attempt to demonstrate the performance of
ISP networks, when todaymore often than not the tool itself
is the bottleneck.

Test infrastructure. The infrastructure that supports the
test may also introduce limitations, if it is incapable of sup-
porting the speeds required to test the speed of the access

3

Electronic copy available at: https://ssrn.com/abstract=3786158



link for a large number of tests. In the past, the Measure-
ment Lab infrastructure has suffered from a lack of available
server endpoints (especially as compared to approaches that
use similar methods such as Ookla, which have an order of
magnitude more servers). The same infrastructure has also
suffered performance limitations due to the underlying net-
work infrastructure which resulted in packet losses under
switch microbursts, resulting in data from the FCC’s MBA
program that had to be invalidated.

2.2.2 Sample Limitations

Sampling bias. Objective measures of real-world perfor-
mance could shed light on differences in online behaviors
or infrastructures by community. For this purpose, we can
examine data from SamKnows whiteboxes or distributed
measurements from Oookla speedtests, newly-released as
Open Data [12]. The SamKnows data includes many mea-
suresofperformance includingbandwidthandconsumption,
and the Ookla speedtest measures bandwidth and latency.
The challenge with these data is that they are highly non-
representative. The sampling frame for the SamKnows data
was stratified by ISP and speed tier (SamKnowsworkedwith
ISPs to under-represented speed cells), rather than accord-
ing to population demographics [6]. While no demographic
indicators are provided, block group or tract of residence is
available for 94% of the households included in the 2018 re-
port. If we aggregate block groups to the tracts that con-
tain them, we can compare tract median household income
between SamKnows residences to the American population
(Figure 2). This reveals a significant offset: a log difference of
0.13, implying incomes 14% higher in SamKnows “neighbor-
hoods.”

A similar effect is apparent in the Ookla data. The Ookla
dataareprovidedpubliclyasquad tiles (zoomlevel 16),which
are are roughly half a kilometer at the equator. These do not
map neatly to Census geographies, but given the small tiles
we can allocate them approximately. We assign each device
from each quad tile in Chicago to a random point within its
tile; we then merge these generated points to Census tracts.
This rough measure of the population of devices can then be
contrastedwith theCensus, bymedianhousehold income, as
above.

Just as for theSamKnowsdata, thedevicesare recorded in
neighborhoods that aremarkedlywealthier than the general
population ofChicago. Theobvious reason for this is that the
general populationdoesnot all have Internet. However, ifwe
weight Census populations by the share of households with
Internet, the gap remains significant. This suggests that peo-
ple in affluent areas are more likely to run speed tests, even
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Figure 2: Normalized distribution of Census tract median household
income, weighted population counts, or for Ookla devices or Sam-
Knows WhiteBox households. The dotted lines weight Census popu-
lations by the share of neighborhood households with a broadband
Internet contract.

conditional on having Internet. One can further see these
neighborhood effects when exploring this data geographi-
cally, as shown in Figure 3.

In short, both state-of-the-art distributed measurements
and official FCC samples are systematically blind to vulnera-
ble populations, who do not run speedtests or volunteer for
FCCmeasurements.

Though we emphasize the significant limitations of the
data, it is possible to contrast performance over the course of
the coronavirus pandemic, by neighborhood, for SamKnows
households. Wefirst divide the SamKnows sample into three
categories by neighborhood income – bottom quartile, mid-
dle quartiles, and highest quartile of the SamKnows sample.
We then plot consumption and speed over time. Within each
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(a) Chicago

(b) Philadelpha

(c)Washington

Figure 3: The number of Ookla Speedtests performed during Q3 2020 for three major U.S. cities shows how the test samples vary by geography
(and demographic).
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Figure 4: Bandwidth measured by SamKnows data for low (first-
quartile), medium (middle quartiles), and high-income tracts. Quar-
tiles are of the SamKnows population. For each segment of the popula-
tion the three lines show the first, second and third quartiles of band-
width.

income group, we plot the 1st quartile, median, and 3rd quar-
tile of the distribution, from November 2019 until the most-
recent release, August 2020. These effects are shown in Fig-
ure 4.

Conditional onhaving Internet, households fromwealthy
neighborhoods do in fact purchase higher-bandwidth plans,
as shown in Figure 5. On the other hand, it is somewhat
surprising to find that from the perspective of consump-
tion households in lower income communities tend to use
moderately more Internet, across the distribution (i.e., at all
three quartiles). These results remain somewhat inconclu-
sive given the limitations of the data, but theyunderscore the
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Figure 5: Received and transmitted data, measured by SamKnows
for low (first-quartile), medium (middle quartiles), and high-income
tracts. Quartiles are of the SamKnowspopulation. For each segment of
the population the three lines show the first, second and third quartiles
of consumption by day.

need for demographically-attuned measurement of Internet
performance and use.

2.2.3 Deployment Barriers

On the other hand, passive collection of application perfor-
mance information introduces a unique set of challenges
since it requires collecting traffic from the network. This ap-
proach introduces both challenges of technical instrumenta-
tion and privacy. First, gathering this type of data from a
home network requires collecting traffic in the home, which
can require extensive instrumentation of the network itself.
A typical home might require a modem, router, andWiFi ac-
cess point, in many cases this functionality is combined in
a single device—sometimes one provided by the ISP, but in

5

Electronic copy available at: https://ssrn.com/abstract=3786158



Figure 6: Passive application performance inference requires exten-
sive network instrumentation, posing a significant deployment bar-
rier.

any case one that is readily available. Unfortunately, these
existing devices do not typically make it easy or possible to
capture network traffic, especially at line rate.

As a result, capturing such traffic requires the level of
instrumentation shown in Figure 6, whereby an additional
switch and capture device are interposed between the router
and the WiFi access point. Additionally, the user’s WiFi ac-
cess point must be configured in bridge mode (the default
configuration of many WiFi access points is often to act as
the router). This configuration is necessary because traffic
capture requires the capability to mirror all traffic seen on a
switch port to a capture device, and consumer-grade routers
andWiFi access points typically do not provide this capabil-
ity. Such instrumentation can prove prohibitive, particularly
for non-technical users.

Furthermore, this measurement technique and instru-
mentation introduce potential privacy concerns, given that
themethodrequires captureofpassive traffic. Inourownpre-
vious work, we have designed such techniques to collect the
minimum amount of data that is necessary to infer applica-
tion performance characteristics, but the technique nonethe-
lessmay be perceived to be invasive by some. This concern is
particularly acute in light of the samplingquestions in earlier
sections, given that portions of the demographic that are not
as well-represented in other datasets may also

3 The Internet During COVID-19
Internet traffic patterns shifted dramatically at the start

of the COVID-19 pandemic, as people increasingly began to
work from home. Various reports have documented how dif-
ferent aspects of the Internet infrastructure responded dur-
ing this time period [1, 3, 8, 10]. In this section, we briefly
survey what we know about how the Internet responded
frompublic data, additional informationweknow fromsemi-
public datasets (e.g., interconnect data), and various things
we do not know either due to a lack of available public
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Figure 7: 99th percentile interconnect link utilization for two ISPs.

datasets or, more generally, a lack of accepted method for
measuring metrics of interest.

3.1 WhatWeKnow
Available datasets can tell us about how various network

metrics, suchas throughputand latency faredover thecourse
of the pandemic, how these how these metrics varied across
ISPs, and how the effects of the pandemic compare to other
exogenous “shocks” (e.g., the holiday season, when home In-
ternet use also tends to experience a surge). In this section,
we briefly survey what we know from these datasets. These
results are also covered in more detail in a corresponding
technical publication [9].
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Figure 8: Peer link utilization for ISP A between January 15 to April
15, 2020.

Traffic volumes increased in general. Traffic surged
about 20% in Europe for broadband networks [7]; the same
study found that the fixed-line Internet infrastructure was
able to sustain the 15–20% increase in traffic that happened

rapidly during a short window of one week. In the United
States, downstream peak traffic has recently stabilized [11],
but in the early weeks of the pandemic, it showed a growth
of 20.1%. Wireless networks saw volume increases of up to
12.2% for voice and 28.4% for data by the top four providers
were shown in an industry report [4]. Industry opera-
tors have self-reported on their network responses largely
through blog posts [1, 3, 8, 10]. Facebook found that de-
veloping regions experienced more significant performance
degradations [2]. Network latencieswereapproximately30%
higher during the lockdown in Italy [7]. According to an
NCTA report, networks in the United States saw less conges-
tion [11].

Traffic patterns increased at interconnection points.
Weconsiderpeak-hour linkutilization fromthe Interconnect
Measurement Project as a measure of traffic demand [5]. We
pre-processed the interconnect dataset and remove anoma-
lous data points that are caused by failures in the measure-
ment system. Figure 7 shows both the absolute utilization
and the utilization normalized against the link capacity for
two anonymized ISPs. For each ISP, we show the value cor-
responding to the 99th percentile link utilization for a given
day. Figure 7a shows that ISP A experienced increase con-
current with the initial COVID-19 lockdowns (early March
2020); ISP B saw a smaller raw increase in utilization. Fig-
ure 7b also shows that both ISPs experienced significant in-
creases in normalized utilization in March–April 2020.

Traffic ratios changed for some peers. We also com-
pared the peak hour download and upload rates on all of ISP
A’s interconnects on (1) January 15, 2020, and (2) April 15,
2020 (Figure 8). Traffic volumes to (and from) some peers
change significantly—some by several orders of magnitude.
Such drastic changes may be attributable to users working
fromhomeandconnecting to services thatwould causemore
traffic to traverse the peer link in the upstreamdirection. We
confirmedthese resultswith theoperatorsat ISPAandreport
that they observed that streaming video traffic decreased
from 67% to 63% of the total traffic, but video conferencing
increased from 1% to 4% as a percentage of overall traffic.

Some ISPs experienced higher latency, particularly in
the tail. Figures 9 shows the 95th percentile of round-trip
latency across the SamKnows Whiteboxes in the FCC Mea-
suring BroadbandAmerica before and during the COVID-19
lockdown. These results show that, overall 95th percentile
latency across most ISPs remained stable. We also studied
99thpercentile latencywhichdid showsomedeviations from

7

Electronic copy available at: https://ssrn.com/abstract=3786158



20
19

-1
2-

01
20

19
-1

2-
11

20
19

-1
2-

21
20

19
-1

2-
31

20
20

-0
1-

10
20

20
-0

1-
20

20
20

-0
1-

30
20

20
-0

2-
09

20
20

-0
2-

19
20

20
-0

2-
29

20
20

-0
3-

10
20

20
-0

3-
20

20
20

-0
3-

30
20

20
-0

4-
09

20
20

-0
4-

19
20

20
-0

4-
29

20
20

-0
5-

09
20

20
-0

5-
19

20
20

-0
5-

29
20

20
-0

6-
08

20
20

-0
6-

18
20

20
-0

6-
28

Dates

0

20

40

60

80

100

Av
er

ag
e 

RT
T 

(m
illi

se
co

nd
s) Verizon

Optimum
Mediacom
Charter

(a) 95th percentile of ISP latency (Group 1).
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Figure 9: Latency (95th percentile) for different ISPs.

normal levels during lockdown for certain ISPs. Notably, in
many cases the same ISPs experienced deviations in latency
during other periods of time, as well (e.g., during the Decem-
ber holidays), suggesting that even in the tail, latency effects
of COVID were not overly pronounced. These results are
likely explained, at least in part, by ISP capacity augmenta-
tion.

ISPs responded to changes in traffic demands by aug-
menting capacity. Using the Interconnection Measure-
ment Project dataset, we calculate the total interconnect ca-
pacity for each ISP by summing the capacities for all of the

links associatedwith the ISP. To enable comparison between
ISPs that may have more or less infrastructure overall, we
normalize the capacity values for each using min-max nor-
malization. We again filter out date values that are beyond
two standard deviations from a rolling 60-daywindowmean.
A linear regression yields a slope for each quarter that illus-
trates the best-fit rate of capacity increases over that quarter.
We scale the slope value to showwhat the increase would be
if the rateof increasewasmaintained for365days (i.e., a slope
of 1 would result in a doubling of capacity over the course of
a year). Figure 10 shows the resulting capacity plots. The
overall trend shows how these two ISPs in the United States

8

Electronic copy available at: https://ssrn.com/abstract=3786158



20
18

-04

20
18

-07

20
18

-10

20
19

-01

20
19

-04

20
19

-07

20
19

-10

20
20

-01

20
20

-04

20
20

-07

20
20

-10

Month

0.0

0.2

0.4

0.6

0.8

1.0

Ca
pa

cit
y 

(m
in

-m
ax

 n
or

m
al

ize
d)

-0.16 0.16
0.33

0.33
0.25

0.22 -0.05

0.72

0.81

0.76

(a) ISP A

20
18

-04

20
18

-07

20
18

-10

20
19

-01

20
19

-04

20
19

-07

20
19

-10

20
20

-01

20
20

-04

20
20

-07

20
20

-10

Month

0.0

0.2

0.4

0.6

0.8

1.0

Ca
pa

cit
y 

(m
in

-m
ax

 n
or

m
al

ize
d)

0.26
0.35

0.18
0.43

0.39
0.27

0.72

1.28

0.64
-0.08

(b) ISP B

Figure 10: Normalized interconnect capacity increases for two ISPs.

addedcapacityatmore than twice therateatwhich theywere
adding capacity over a comparable time period in the previ-
ous year. Second, both ISPs significantly added capacity in
the first quarter of 2020—at a far greater rate than they were
adding capacity in the first quarter of 2019.

3.2 WhatWeDon’t Know
Application performance. Available public datasets
have little to say about how individual applications per-
formed, as well as user quality of experience when using
those applications. Our inability to shed light on applica-
tionperformance anduser quality of experience is somewhat
problematic, given that such metrics ultimately reflect how

well the Internet is performing for users within the context
of the applications they are trying to use. Unfortunately, for
reasons previously mentioned, obtaining application perfor-
mance and quality of experience metrics at scale can be chal-
lenging because doing so requires either instrumentation of
specific applications or (as previously discussed) invasive
network instrumentation coupled with statistical inference
techniques to infer application quality. An open challenge
for the policy community is thus reconciling the importance
of these types of metrics with the lack of these metrics in
publicly available datasets and the general inability to gather
such publicly available datasets at scale. An alternative ap-
proach may be to first design such measurements to be “hy-
per local”, aswediscuss in Section 4, and thendeterminehow
to scale themmore generally.

Measurements at fine spatial and temporal granular-
ity. Critics are often quick to point out that aggregates
”hide” outliers. For this reason, much of our analysis in this
paper and other related work has focused on the 95th and
99th percentiles, as well as exploration of outlier statistics.
Aggregates can still be necessary and useful: not only can
they serve as helpful summary statistics but also in some
cases (e.g., with interconnection data), aggregation is a con-
dition to publicly sharing data that might otherwise be pri-
vate. The issue, then, is not to necessarily avoid aggregates
altogether but rather to be very clear on what these statis-
tics can and cannot tell us. One particular limitation of the
interconnection data we have presented, for example, is that
is does not tell us whether particular isolated or short-lived
high-utilizationeventsoccurredonaparticular interconnect;
theprivate dataset allowsus to affirmthis, but sharingdata at
finer granularity with the general public would permit more
thorough examination from the public. Second, and particu-
larly important to the digital divide, many available datasets
do not permit an exploration of the data at block-level geo-
graphic granularity, yet many of the issues with infrastruc-
ture, performance, and broadband Internet adoption exist at
that granularity.

How different communities fared. Related to the lack
of fine spatial granularity in existing datasets is the lack of
informationmore generally about how various underserved
communities have fared with respect to Internet availability,
adoption, and performance. As discussed, existing survey-
based datasets ask questions about availability of broadband
Internet at extremely coarse granularity; that information is
not collected in a way that is specific to how Internet uptake
or performance fared during the pandemic, nor does it shed
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lightonthequalityofexperience theseusershavefacedwhen
attempting to use video conference applications (or other ap-
plications) as they have been forced to work, learn, and play
at home, especiallywithin communities that have long faced
barriers to Internet infrastructure.

4 Looking Ahead
While existing datasets have allowed us to understand

that the Internet infrastructure has held up very well during
the pandemic, the current situation has amplified the dispar-
ities that have existed for a long time.

Ultimately, bridging this divide will require gathering
more holistic data about not only network performance, but
also better information about application performance, user
quality of experience, and better data about uptake and adop-
tion. Better data can ultimately drive investment and di-
rect policy, but doing so effectively requires knowing where
those problems lie, and what specifically is contributing to
these gaps in connectivity. Previousworkhas explored these
problem from one dimension at a time, from the perspective
of Internet speed or surveys. Better data can also provide de-
cision makers with insights so that they can make the best
possible decisions about how to direct the resources and in-
vestments An important aspect of this exercise is matching
the data inference and insights to the questions that policy
makers are asking and need to know. Too often available
data is not responsive to the precise questions being asked by
policymakers, yet is used anyway to advocate. In this case,
wemust seek data that go beyondmerely providing evidence
that a problem exists towards insights that give us a deeper
understanding of the true causes of the problems.

Initially, our focus on improved datasets involves going
deeper into a few communities in Chicago to deeply under-
stand themany dimensions of this problem, including physi-
cal infrastructure, network availability and performance, ap-
plication quality of experience, and other factors including
adoption and use within communities. We aim to develop
these new methods designing them in such a way that it
serves as a rubric that can be replicated and scaled from a
few communities to cities, and ultimately to nations.
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