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Abstract
Analysis techniques are critical for gaining insight into network
traffic given both the higher proportion of encrypted traffic and
increasing data rates. Unfortunately, the domain of network traffic
analysis suffers from a lack of standardization, leading to incompa-
rable results and barriers to reproducibility. Unlike other disciplines,
no standard dataset format exists, forcing researchers and practi-
tioners to create bespoke analysis pipelines for each individual
task. Without standardization researchers cannot compare “apples-
to-apples,” preventing us from knowing with certainty if a new
technique represents a methodological advancement or if it simply
benefits from a different interpretation of a given dataset.

In this work, we examine irreproducibility that arises from the
lack of standardization in network traffic analysis. First, we study
the literature, highlighting evidence of irreproducible research
based on different interpretations of popular public datasets. Next,
we investigate the underlying issues that have lead to the status quo
and prevent reproducible research. Third, we outline the standard-
ization requirements that any solution aiming to fix reproducibility
issues must address. We then introduce pcapML, an open source
system which increases reproducibility of network traffic analysis
research by enabling metadata information to be directly encoded
into raw traffic captures in a generic manner. Finally, we use the
standardization pcapML provides to create the pcapML benchmarks,
an open source leaderboard website and repository built to track
the progress of network traffic analysis methods.

1 Introduction
Researchers have developed methods to classify network traffic
for over 30 years [55]. Classification techniques have been used
for a variety of analysis tasks such as application detection, device
identification, intrusion detection, and website fingerprinting [13,
43, 46, 61]. In the past, techniques were able to leverage information
inside of packet payloads in order to easily classify traffic. However,
with the rapid adoption of encrypted network protocols, coupled
with ever-increasing data volumes, network traffic analysis has
become both more important and more challenging. Research in the
field has largely turned to machine learning techniques to address
both of these challenges. Yet, after almost 20 years of applying
machine learning techniques to various traffic analysis problems,
no standard dataset format or comparison methodology exists [51].

The lack of a standardized dataset format had led directly to a
reproducibility crisis in traffic analysis research: correctly repro-
ducing previous work is near-impossible. Researchers are required
to build bespoke pipelines for each new dataset in which they must
engineer a pipeline to parse the format of the dataset, organize the

packets according to the task (i.e., applications, intrusions, devices,
websites), attach metadata to each set of separated packets, and
finally develop and evaluate an analysis technique. Testing even
the same technique on a different dataset requires re-inventing the
wheel: engineering a new pipeline for a new task. Worse, ambigu-
ous terminology commonly used throughout the field, such as a
“traffic flow” or an “application” can lead to researchers, starting
from the same dataset, to test analysis techniques on completely
different definitions of a task.

These issues lead to multiple downstream problems. First, anal-
ysis techniques, such as the performance of a machine learning
classifier, are compared against one another when the underlying
problem definition differs. Second, the difficulty of creating analysis
pipelines has led to a focus on pre-processed datasets, in which the
dataset curators release features extracted from the original net-
work traffic as opposed to the raw packets. Techniques stemming
from these pre-processed datasets are inherently limited to a sub-
set of the released features and resulting research ultimately ends
up being a “model bake-off,” necessarily precluding the discovery
of unforeseen features for a given task. Finally, all of these issues
create a barrier not only to reproducibility, but to innovation in
the field. When compared with the progress of other fields, such
as image recognition or natural language processing, techniques
in network traffic analysis have been relatively stagnant despite
increasing need for accurate analysis methods.

This work examines the state of network traffic analysis research.
We first highlight evidence of reproducibility challenges using ex-
amples from multiple public datasets. We then highlight underlying
causes of these reproducibility issues, including the use of ambigu-
ous terminology, the lack of a standardized dataset format, and a
focus on pre-processed datasets. Next, we take our learnings and
outline a list of requirements that any proposed standardization
solution must meet.

Finally, we introduce pcapML, an open source system that aims
to meet our requirements and standardize network traffic analysis
research. Rather than focus on a standardized feature set, which
previous work has called for, pcapML standardizes network traffic
analysis research at the dataset level [12, 18]. pcapML does this by
enabling researchers to encode metadata and traffic definitions (i.e.,
traffic flow directionality) directly into raw traffic captures in a
generic manner. Further, pcapML-encoded datasets can still be ana-
lyzed by themost popular traffic analysis tools and libraries. Further,
we release pcapML-FE, an open source python library which lowers
the bar for researchers to incorporate pcapML-encoded datasets
into existing pipelines. Lastly, we use pcapML to create the pcapML
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Figure 1: Releasing metadata separate from raw traffic leads to differing versions of the same original task, rendering it im-
possible to directly compare results.

Class Distribution

Source Citations Year Normal DoS Probe R2L U2R

Dataset Release [43] 1287 2000 1,157,873 1,919,937 54,793 949 48
Khan et al. [36] 498 2007 878,318 308,808 15,120 3,327 39
Wang et al. [86] 301 2017 1,309,598 2,152,850 89,301 14,535 436

Table 1: Usage of the KDD-CUP98 dataset differs from both
the original release and other works.

benchmarks a public leaderboard and repository for any traffic anal-
ysis task and dataset, enabling dataset creators to list their work
on a central platform, dataset users to directly compare methods
on a variety of tasks, and the field to better track the progress of
analysis techniques.

The rest of the paper organized as follows. Section 2 presents
evidence of the need for standardization in network traffic analysis.
Section 3 uses the lessons learned from Section 2 to outline a list of
requirements for any standardization solution. Section 4 presents
pcapML and pcapML-FE, open source systems built to increase
reproducibility and increase innovation in the field. Next, Section 5
presents the pcapML benchmarks, an open platform for dataset
creators and users to develop and compare research. Section 6 then
provides general recommendations for sound, reproducible research
moving forward. Finally, Sections 7 and 8 examine related works
and summarize our contributions.

2 The Need For Standardization
In this section we examine irreproducibility in the current network
traffic analysis ecosystem. First, we investigate literature leveraging
several popular network traffic datasets, finding that standard prac-
tices lead to incomparable and irreproducible research, visualized
in Figure 1. We then survey the literature to outline the practices
that lead to irreproducible research.

2.1 Examples of reproducibility challenges.
We begin by examining popular network traffic datasets and liter-
ature that tests methods using those datasets. The following sub-
sections highlight three popular datasets examined. We describe
how the datasets are curated, the release format of the datasets, and
finally compare literature leveraging the datasets to demonstrate
examples of irreproducibility in network traffic analysis.

We wish to clearly state that the datasets and papers mentioned
are not chosen to point out methodological errors by these specific
dataset curators or paper authors. On the contrary, the referenced
datasets and papers generally represent a higher standard of repro-
ducibility than many of the datasets and works we examined in our
search in that they outline their methodology and dataset usage in
such a way that comparisons can be made.

2.1.1 DARPA 1998

Overview. The DARPA 1998 intrusion detection dataset is
perhaps the oldest and most well known intrusion detection
dataset [43]. The dataset was created in an effort to evaluate and
compare intrusion detection methods on the same task. In all, the
dataset consists of seven weeks of training data and two weeks of
testing data, containing both benign network traffic and 38 attacks
comprising 4 broader classes of attack to be classified. Although
this dataset has known criticisms in terms of class distribution
and experimental collection it has still been widely used due to its
long-term availability [52].

Format. The network traffic was captured using tcpdump and
released in the PCAP file format [77]. As the challenge consisted
of traffic across ten weeks, a PCAP file was released for the traffic
captured for each day of the experiment. In all, this results in 45
separate PCAP files. The metadata for the traffic was released in
separate “list” files, which are CSV-like in structure. For each PCAP
file, a list file was released with labels for TCP and UDP sessions
found in the raw traffic. Each record in the metadata files lists the
start date, start time in Hour:Minute:Second format, the four-tuple
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Class Distribution
DoS Web

Source Citations Year Benign Bot DDoS GoldenEye Hulk Slowhttptest Slowloris Heartbleed Infiltration PortScan FTP-Patator SSH-Patator Brute Force SQL Injection XSS
Original Dataset [67] 1,057 2018 2,273,097 1,966 128,027 10,293 231,073 5,499 5,796 11 36 158,930 3,938 5,879 1,507 21 652
Vinakayumar et al. [84] 484 2019 80,000 1,966 8,000 8,000 ♦ - - 8,000 7,938 5,879 2,180♦
Zhang et al. [98] 63 2019 339,621 1,441 16,050 7,458 14,108 4,216 3,869 - - 158,673 3,907 2,511 1,353 12 631
Zhou et. al et al. [99] 134 2020 439,683 - - 10,293 230,124 5,499 5,796 11 - - - - - - -
Barut et al. [12] 5 2020 248,067 - 45,168 29,754♦ - 66,914 153,028 3,958 2,464 2,019♦
Stiawan et al. [75] 47 2020 454,396 367 76,265♦ - 6 32,882 2,717 - 426 - -

Table 2: Work stemming from the same dataset ends up testing methods on differing versions of the same dataset, rendering
direct comparisons impossible. (♦ denotes merged classes.)

(source IP, destination IP, source port, destination port), and the
label for the session.

Evidence of Irreproducibility. Researchers using the dataset are
required to build a pipeline that parses the raw network traffic by
session, associates each record in the metadata file with the set
of raw packets that define the session, and extracts information
from the session to classify it. To highlight how this methodology
can lead to reproducibility and comparability issues in practice,
we take the “list” files released with the dataset and calculate the
distribution of samples in each of the five classes of traffic. We
then examine work from the literature that leveraged the dataset
to compare this class distribution with.

Table 1 shows the results of this experiment. We see that authors
ultimately experiment with analysis methods on different versions
of the dataset. The number of samples in each class of traffic differs
both from the originally released dataset and each other. As such,
comparisons of the intrusion detection methods in the papers listed
and the originally published methods are difficult, if not impossible,
to perform. Further, recreating these works is near-impossible as
to do so one must recreate an entire bespoke pipeline that lead to
a differing version of the underlying dataset. These issues partly
occur due to the difficult and messy nature of merging raw network
traffic and metadata. Wang et al. describe issues they encounter
during this process [86]:

“The traffic format of DARPA1998 is non-split pcap,
which must be split into multiple network flow files.
In addition, the label files contain a few problems,
such as duplicated records and incorrect labels. For
example, the label file “Test/Week2/Friday” contains a
record of “07/32/1998,” which is an obvious date error.
Therefore, the dataset requires preprocessing before
the experiments can be conducted.”

2.1.2 CICIDS 2017.

Overview. The CICIDS 2017 intrusion detection dataset was
specifically curated to represent a more modern intrusion detection
dataset than previously available [67]. The dataset consists of over
40GB of network traffic captured over the course of five days. 15
different classes of network traffic exist in the dataset: 14 types of
attack traffic flows and benign traffic flows.

Format. The dataset was released in two formats. First, a pre-
processed set of features in which the authors extract features from
each labeled flow for use with machine learning methods, using a
custom built system. Second, the raw network traffic and associ-
ated labels were released as a set of PCAP files, one to two PCAP

files per day of the experiment, and a metadata CSV containing
information to link the raw traffic flows to a label, such as the flow
start timestamps and flow 5-tuples.

Evidence of Irreproducibility. We again process the metadata files
released with the dataset, determining the class distribution of the
dataset. We then examine the literature for work testing methods
on the dataset which reports the class distribution used for their
experiments. Table 2 compares the class distribution in the original
dataset compared with work leveraging the dataset.

Table 2 again shows that authors ultimately test methods on
different interpretations of the same dataset. No row in Table 2 is
identical to another. Various works leveraging the dataset merge
multiple classes into a single class, subsequently downsampling
the number of flows in the merged class. Others ignore classes in
the original dataset altogether. Research developing and testing
methods on differing interpretations of the same dataset render it
difficult to reason about the superiority of any intrusion detection
method over another.

2.1.3 VPN-nonVPN

Overview. The third dataset we examine in detail is the VPN-
nonVPN dataset, released in 2016 [23]. The dataset consists of traffic
from 7 different types of applications, such as “web browsing” or
“streaming.” The dataset contains both VPN and non-VPN traffic for
each type of application, consisting of 14 different labeled traffic
classes.

Format. The dataset is released as a set of PCAP traffic files. Each
PCAP file contains traffic generated by an application. Metadata
for the traffic is encoded in the name of each PCAP, as each PCAP
file is named by the specific application that generated the traffic,
such as email1a.pcap. No information mapping the network traf-
fic to the broader application type, which is ultimately used for
evaluation in the paper, is released. There is a description of the
specific applications that make up each “application type” in the
paper itself.

Evidence of Irreproducibility. We survey the literature leveraging
this dataset to understand how it is used. Although we are unable
to gather detailed information regarding the class distribution for
each work, we do find the number of classes of traffic used for
evaluation in the original work and subsequent work.

As with previous examples, Table 3 illustrates that works lever-
aging the dataset interpret the dataset differently from one another.
Table 3 also records the authors labeling process as described in each
paper, demonstrating how differing versions of the same dataset
can be created. Wang et al. even note that they correspond with
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Paper Citaitons Classes Labeling Description

Draper-Gil et al. [23] 365 14 Original Dataset

Wang et al. [87] 346 12
“The flow features of ISCX dataset have 14 classes of labels, but the raw traffic has no labels, so we labeled pcap files in the dataset according to the description of their paper.
Some files such as “Facebook_video.pcap” can be labeled as either “Browser” or “Streaming”, and all files related to “Browser” and “VPN-Browser” have this problem.
We can’t solve this problem even after email communication with the authors, so we decided not to label these files.”

Lotfollahi et al. [44] 385 12, 17

“..the dataset’s pcap files are labeled according to the applications and activities they were engaged in. However, for application identification and traffic characterization tasks,
we need to redefine the labels, concerning each task. For application identification, all pcap files labeled as a particular application which were collected during a nonVPN session,
are aggregated into a single file. This leads to 17 distinct labels shown in Table 1a. Also for traffic characterization, we aggregated the captured traffic of different applications involved
in the same activity, taking into account the VPN or non-VPN condition, into a single pcap file. This leads to a 12-classes dataset, as shown in Table 1b.”

Zou et al. [100] 41 12 “The dataset contains 25GB raw traffic in the pcap format, which includes 14 network application classes, where 7 for regular traffic (such as Spotify and Facebook) and the rest for the
corresponding traffic with VPN encrypted (such as VPN- Spotify and VPN-Facebook). We relabel the raw traffic into 12 classes, to be used in our experiments...”

Zeng et al. [96] 96 7

“The first selected dataset is regenerated from ISCX VPN-nonVPN traffic dataset in order to evaluate the effectiveness of DFR on encrypted traffic classification. ISCX VPN-nonVPN dataset
originally has 7 types of regular encrypted traffic and 7 types of protocol encapsulated traffic. Since we mainly focus on evaluating the efficiency on encrypted traffic classification, we will select
and label data from those 7 types of regular encrypted traffic, which are Web Browsing, Email, Chat, Streaming, File Transfer, VoIP, and P2P. To be noticed that all other six types of encrypted
traffic are related to Web Browsing, hence we abandoned his class of encrypted traffic referring to Wang’s work.”

Barut et al. [12] 5 7, 18, 31

“The third dataset focuses on application type classification and is called non-vpn2016. It is obtained by extracting flow features using only the non-vpn raw traffic capture files from the
CIC website as our feature extraction tool does not support VLAN processing yet. Three levels of annotations are assigned to this dataset: top-level, mid-level and fine-grained.
Top-level annotations are a general grouping of those traffic capture data and 7 classes are selected including P2P, audio, chat, email, file_transfer, tor, video.
Mid-level annotations contain 18 type of applications (facebook, skype etc.) while fine-grained annotations identify 31 lower-level classes in an application
(facebook_audio, facebook_chat, skype_audio, skype_chat\\etc.). Table 4 gives the list of files used to create non-vpn2016 dataset.”

Wang et al. [85] 106 15
“The dataset for evaluation is selected from the “ISCX VPN-nonVPN traffic dataset’. As shown in Table 2 the total dataset for evaluation is composed of 15 applications, e.g., Facebook,
Youtube, Netflix, etc. The chosen applications are encrypted with various security protocols, including HTTPS, SSL, SSH, and proprietary protocols. A total of 206,688 data packets
are included in the selected dataset.”

Table 3: The current traffic analysis ecosystem creates a burden for dataset curators and researchers using the dataset. Dataset
curators are forced to choose a format to release the dataset and work with researchers to rebuild the dataset. Researchers
using the dataset must attempt to recreate the datasets faithfully.

Term Referenced By

5-tuple flow [11, 12, 27, 29, 49, 68, 87, 98–100]
4-tuple flow [24, 78, 80]
application [12, 29]
bi-directional flow [12, 23, 96]
bi-directional session [87]
channel [10, 53]
dns encrypted flow [70]
flow [7, 12, 16, 44, 80]
network flow [43, 56, 84]
network trace [62]
packet trace [41]
stream [31]
sub-flow [68, 75, 99]
tcp connection [1, 15, 16, 43, 89]
tcp flow [33]
tcp session [4, 43, 88]
tcp stream [16, 32, 37, 88]
tcp sub-flow [94]
traffic burst [97]
traffic flow [10, 29, 49, 97]
traffic stream [49]
traffic trace [7, 31, 64, 71]
udp connection [43]
udp flow [80]
website trace [14, 26, 41, 58, 59, 63, 64, 72, 73]

Table 4: Terminology varies among work examined.

the original authors and still cannot fully reproduce the original
dataset, ultimately testing methods on a dataset with two fewer
classes than the original work [87].

2.2 Causes of Irreproducibility
Subsection 2.1 presented examples of irreproducibility in network
traffic analysis. In this section, we outline and investigate the causes
of irreproducibility in network traffic analysis.

2.2.1 Ambiguous Terminology The datasets examined in Subsec-
tion 2.1 describe network traffic and analysis tasks using terminol-
ogy common throughout the field. The DARPA 1998 analysis task
focuses on “sessions”, which correspond to individual TCP or UDP
“connections” between two IP addresses. The CICIDS 2017 analysis
task examines “flows”, which they define as bi-directional using the
5-tuple definition of a flow (source IP, destination IP, source port,
destination port, protocol). Finally, the VPN-nonVPN dataset fo-
cuses on “application” identification, where applications are defined
by single traffic flow which is considered to be bi-directional.

Although vernacular is useful in conversation, precise definitions
of these terms are required for reproducible research. We perform
a simple experiment to better understand the varied definitions of
similar terminology in traffic analysis. We examine work appearing
in ACM CCS, USENIX Security, PETS Symposium, IEEE S&P, and
NDSS in the years 2021, 2020, and 2019, further supplementing our
search with papers already included in Subsection 2.1. We search
each paper for two types of terms. First, we look for the most
specific term used for defining the analysis task at hand, such as
“5-tuple traffic flow” or “application”. Second, we examine terms
used when defining features for classification, such as “sub-flow”
or “tcp-stream”. We do not simply report if a term appeared in a
paper in any capacity, nor do we consider subsets of terms (i.e.,
5-tuple flow does not also include flow). We examine and extract
terminology used in 50 papers in total.

Table 4 shows the 25 separate terms found during the search.
Perhaps more concerning than the raw number of terms used to
describe analysis tasks is that even terms in the same row of Table 4
can vary in definition. For example, works can consider 5-tuple
flows as either uni-directional or bi-directional [67, 98]. We fur-
ther detail two classes of terminology below and describe how
ambiguous terminology can directly lead to researchers working
on non-identical tasks.

Flows. The term “flow” is present throughout a large number of
papers we examine, but defined differently in many of the papers.
For example, some works define a flow using a 4-tuple (source IP,
destination IP, source port, destination port), while others use a
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Dataset Citations Task Raw Traffic (PCAP)? Metadata
Format

Preprocessed
Features?

DARPA 1998 [43] 1,288 Intrusion Detection 2� List File
DARPA 1999 [42] 1,250 Intrusion Detection 2� Described On Website
UNSW-NB15 [54] 1179 Intrusion Detection 2� ARGUS, BRO, CSV 2�
TON_IoT [2] 60 Cybersecurity Applications 2� LOG, CSV 2�
Bot-IoT [38] 376 Botnet Detection 2� ARGUS, BRO, CSV 2�
CICIDS 2017 [67] 1,057 Intrusion Detection 2� CSV 2�
VPN-nonVPN [23] 365 Application Type 2� Described In paper 2�
Android Malware 2017 [69] 938 Malware Detection 2� CSV 2�
Tor 2016 [39] 300 Application Type 2� Described On Website 2�
CTU-13 [25] 540 Botnet Detection BIARGUS 2�
NSL-KDD [35] 3,339 Intrusion Detection CSV 2�
KDD99 [8] - Intrusion Detection CSV 2�
Deep Fingerprinting [71] 161 Website Fingerprinting PKL 2�

Table 5: Dataset formats and separate tasks create a large barrier to testing new methods

5-tuple definition (4-tuple and protocol). Worse, each of these defini-
tions can be further divided into uni-directional and bi-directional
versions. These distinctions can, and have, lead to the branching
methodologies shown in Figure 1. For example, Sharafaldin et al.
curated, released, and provided an intrusion detection method for
the CICIDS dataset [67]. In their work, they analyze the dataset
considering flows as bi-directional 5-tuples, while a 5-tuple flow
can also be thought of as uni-directional. Zhang et al. subsequently
leverage the raw CICIDS dataset but use software to parse the traf-
fic which considers 5-tuple flows as uni-directional, representing
a different task than the original authors. Combining this issue
with the varying class distributions shown in Table 2 only creates
more methodology branches which are not directly comparable
with others.

Even small modifications to the definition of units of traffic can
directly affect the results of analysis methods. Draper-Gil et al. ex-
amine this, analyzing the performance of models trained on an
application identification task using four different flow timeout val-
ues, finding that the accuracy of the models varied by up to 3% [23].
In another example, Garcia et al. redefine and re-release a popular
public dataset based off of bi-directional traffic flows outperforming
a uni-directional flow definition on the same task [25]:

“Each scenario was captured in a pcap file that con-
tains all the packets of the three types of traffic. These
pcap files were processed to obtain other type of in-
formation, such as NetFlows, WebLogs, etc. The first
analysis of the CTU-13 dataset, that was described and
published in the paper "An empirical comparison of
botnet detection methods" (see Citation below) used
unidirectional NetFlows to represent the traffic and
to assign the labels. These unidirectional NetFlows
should not be used because they were outperformed
by our second analysis of the dataset, which used
bidirectional NetFlows.”

.

Applications and Websites. The “application identification” and
“website fingerprinting” tasks further exhibit the perils of ambigu-
ous terminology in traffic analysis. Clearly defining the set of pack-
ets that are attributable to a single application or website is criti-
cal to comparing, contextualizing, and reproducing methods for a
given task, as definitions of these tasks can drift over time. In the
past, applications often used a single network flow (5-tuple, uni-
directional) [13]. However, modern applications commonly leverage
multiple simultaneous traffic flows (e.g., Netflix video streaming can
include many several underlying flows for a single video session),
and recent research has used this information to analyze traffic [19].
Website fingerprinting tasks raise similar questions: does a website
trace comprise of only traffic to and from a single server IP address,
or are the multiple connections to other server IPs considered when
performing analysis?

2.2.2 Different Tasks, Different Dataset Formats. The three datasets
presented in Subsection 2.1 comprise two discrete tasks: application
classification and intrusion detection. Yet, each of the three datasets
requires a custom-built analysis pipeline to develop and test meth-
ods. Although all three datasets store their network traffic in the
PCAP capture format, the metadata, which defines how to separate
the packets into an “intrusion” or an “application”, is released in
a variety of formats. Table 5, which shows the release format of
a variety of popular datasets, demonstrates that this is common
practice: datasets release network traffic in PCAP format and meta-
data in a one-off manner. Worse, Table 5 demonstrates that even for
researchers working only on a single task (i.e., intrusion detection),
there is no common dataset format to interact with. Each dataset
format increases the engineering burden on researchers developing
new methods, increasing the chances for human error and resulting
in branching methodologies shown in Figure 1.

2.3 Preprocessed Datasets Inhibit Innovation.
Another trend seen in Table 5 and subsequent research is a heavy
focus on releasing pre-processed traffic as well as calls for stan-
dardized feature sets [12, 18]. The highest cited dataset in Table 5,
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the NSL-KDD dataset, is a set of pre-processed features derived
from the KDD99 dataset which was originally derived from the
DARPA1998 and DARPA1999 datasets[35].

The predictive accuracy of any machine learning algorithm, re-
gardless of task, is impacted by the representation of the data that is
offered to the model as input. Typically, machine learning pipelines
are developed iteratively, observing model performance using dif-
ferent representations of the raw data. It stands to reason that it
can be difficult, if not impossible, to know which features should
be extracted and how data is best represented for any given task a
priori. Publicly released datasets of pre-computed features, rather
than raw network traffic that was used to generate the features,
prohibit future researchers entirely from exploring new features
that the original work may not have considered. This practice di-
rectly hinders advances in techniques, forcing research based on
pre-processed datasets to ultimately boil down to model “bake-offs.”

3 Standardization Requirements
In this section we outline a list of requirements that a system for
standardized traffic analysis must meet. These requirements arise
from issues uncovered in Section 2.

Compatible. A large ecosystem of mature and well-known
tools and libraries exists for parsing, filtering, and analyzing net-
work traffic, including tcpdump, tshark, wireshark, pf_ring, and
libpcap [57, 76, 77, 92, 93]. Any solution that is not inherently com-
patible with this long-developed ecosystem of tools would amount
to re-inventing the wheel and be highly unlikely to be adopted.

Standard. Section 2 explored the pitfalls of requiring researchers
to build analysis pipelines for a variety of dataset formats. Any
system for standardized traffic analysis must standardize all traffic
analysis tasks and datasets under a single dataset format. This
requirement significantly lowers the burden on researchers creating
and reproducing traffic analysis research, decreasing the chance for
human error.

Portable. The standardization solution must unify metadata and
raw traffic traces. This requirement eliminates engineering errors
that can occur when stitching together metadata and raw network
traffic traces. Ultimately, any standardization solution should enable
dataset curators to release a single file that contains all raw traffic
and associated metadata whenever feasible.

Unambiguous. Section 2 examined the variety of terms that can
be used to categorize and identify network traffic, such as traf-
fic flows, traffic sessions, application traffic, and website traces.
Vague terminology leads to work that is incomparable. As such, a
standardization solution must provide a method for eliminating all
ambiguity by encoding this information with the network traffic.

Unprocessed. Pre-processed datasets make the assumption that
the pre-processed features best describe the traffic, reducing future
methods to only a subset of the preprocessed features. A standard-
ization solution must occur at the lowest granularity possible, the
packet level, to avoid any loss of information that could be leveraged
in future work.

Reproducible. Any standardization solution must provide users
with the ability to uniquely identify all traffic samples in a dataset
(i.e., traffic flows, applications, devices). This requirement enhances
the reproducibility of traffic analysis work, by enabling researchers
to directly compare new methods with previous ones.

4 pcapML
In this section we present pcapML and pcapML-FE (Feature Ex-
plorer), open source systems designed to address issues with current
practices highlighted in Section 2 while meeting the requirements
presented in Section 3. We begin by discussing our solution for
the pcapML output file format and embedded metadata. We then
present the processing pipeline of pcapML using an example case
study. Next, we evaluate costs associated with pcapML using multi-
ple data sets. Finally, we present pcapML-FE, which eases the burden
of incorporating pcapML outputs into existing ML pipelines.

4.1 Output Format: PCAPNG
As outlined in Section 3, any standardization solution must meet
multiple requirements, including providing a standard format that
is compatible with the existing ecosystem of tools.

Almost universally, the networking community has settled on
using the PCAP capture format for capturing, storing, analyzing,
filtering, and releasing network traffic [28]. The PCAP file format is
supported by every popular traffic analysis tool, including tcpdump,
libpcap and wireshark [76, 77, 93]. Unfortunately, the PCAP for-
mat, which can be conceptualized as a linked list of raw network
packets, provides no generalizable method to unify metadata and
raw packets. Techniques to embedmetadata information into packet
headers, such as optional IP or TCP options, cannot be relied upon
as there is no guarantee that these headers will exist in every packet,
or that such headers contain the necessary space for metadata. This
limitation has led to the status quo for datasets: traffic captures and
metadata are stored and released as separate files.

More recently (beginning in 2014), working groups have de-
veloped the PCAP next generation (PCAPNG) traffic capture for-
mat [47]. While the PCAP format represents a linked list of raw
packets, the PCAPNG file format can be conceptualized as a linked
list of blocks which encapsulate raw packets. Each packet block
contains the raw packet data, the timestamp the packet was cap-
tured, and importantly, has a variable length options field. The
options field resembles other variable length option fields, such
as the TCP options in that it is represented as a list of code, value
pairs. pcapML leverages the options field on each packet block to
encode metadata directly into the PCAPNG file, unifying metadata
and raw network traffic. Our use of PCAPNG satisfies several of
our requirements presented in Section 3, as discussed below.

Compatible. The PCAPNG file format has the benefit of already
being supported by the most popular libraries and tools to capture
and analyze network traffic. Wireshark and tshark are able to
both parse and output PCAPNG traffic captures by default, and
libpcap and tcpdump can parse PCAPNG captures[77, 91].

Standardized. PCAPNG’s options field provides a means to unify
metadata and raw network traffic and create a standard, unified
dataset format for holding both network traffic and metadata.

6



Figure 2: pcapML enables researchers to directly encode metadata into raw traffic captures in a manner that familiar tools
used to filter, read, and analyze network traffic can still be leveraged.

There are two options to attach metadata to each packet. First, the
PCAPNG file format contains a built-in option type, opt_comment,
which allows for arbitrary UTF-8 strings to be attached to every
packet in a traffic capture. The advantage of using the built-in op-
tion is the guaranteed portability of the encoding. The disadvantage
of this method is there is no specified structure for the metadata-
encoding as the comment is an arbitrary UTF-8 string. The second
option for encoding metadata into the packet block options field
is to use a custom option type. This method has the advantage of
building structure into the option itself. Unfortunately, the draw-
backs include lack of guaranteed portability and flexibility in the
future. As such, pcapML leverages the preexisting opt_comment for
unifying metadata and raw traffic, using a generic CSV structure
inside of the UTF-8 string itself to encode information.

Portable. We leverage the PCAPNG format to directly embed
metadata information for every packet in a network traffic trace.
As such, pcapML creates a single, portable solution for network
traffic datasets, enabling researchers to build analysis pipelines for
multiple datasets and tasks around a single dataset format.

Unprocessed. pcapML enables feature exploration by providing a
solution at the finest granularity possible, the packet level. Attach-
ing metadata to each individual packet in a dataset incurs no loss
of information, allowing researchers to explore, test, and compare
potentially unseen features and methods for analyzing the traffic
with existing techniques.

4.2 Metadata Format: SampleIDs
As discussed, the PCAPNG file format enables us to directly couple
metadata and individual network packets. We now require a gen-
eralizable method to match any given packet with its associated
metadata and traffic sample. For each traffic analysis task, a traffic
sample can be defined differently. In a traffic flow identification task,
all packets that belong to a given traffic flow comprise a single traf-
fic sample. For an OS detection task, a single packet may constitute
a traffic sample. For anomaly detection, all of the packets inside of
a specific time window can comprise a single traffic sample. Finally,
for an application identification task, all of the packets created by
an application, which may include multiple traffic flows, comprise
a single traffic sample.

The variety of goals and traffic sample definitions has led to
bespoke pipelines for each individual task. With pcapML, our goal
is to find a generalizable solution for the field to build upon. We
notice that all traffic analysis tasks have an important common
factor: every traffic sample can be defined by a group of one or more
packets. We leverage this insight and the ability to encode meta-
data into PCAPNG traffic captures to create sampleIDs, a simple,
generalizable method to identify traffic samples. pcapML’s use of
sampleIDs fulfill two requirements that outlined in Section 3.

Unambiguous. pcapML eliminates ambiguity by generating a
sampleID for each group of packets that represents a traffic sam-
ple for a given analysis task. For example, pcapML can generate
a sampleID for every packet belonging to the same traffic flow,
application, anomaly, operating system, device, or any other packet
grouping. Attaching a sampleID to every packet in a PCAPNG traf-
fic capture, pcapML removes ambiguity surrounding which packets
are meant to be associated with a given traffic sample, eliminating
all ambiguity arising from vague traffic analysis terms that can
be interpreted in multiple ways such as “traffic sessions”, “traffic
flows”, and “applications.”

Reproducible. The sampleIDs that pcapML generates provide a
means for future researchers to definitively know which traffic
samples (i.e., groups of packets) were used for a given analysis task.
This capability greatly enhances reproducibility of research, as re-
searchers can know that they are able to work on “apples-to-apples”
methodological comparisons at the packet-level. For example, sam-
pleIDs enable researchers to publish the sampleIDs of their training,
testing, and validation sets for machine learning based traffic anal-
ysis tasks, allowing future researchers to not only ensure they are
using the same packets in each traffic sample, but even the same
dataset splits. Finally, sampleIDs can increase the depth of under-
standing across various methods, allowing researchers to uniquely
identify the specific samples on which their techniques perform
well or poorly.

4.3 Design and Usage
We have described the methods that pcapML uses to satisfy the
requirements outlined in Section 3. Figure 2 shows an overview of
pcapML, an open source system for standardizing traffic analysis
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datasets. In this section outline the capabilities and uses of pcapML
in practice using a public dataset to provide illustrative examples.

We leverage the Snowflake Fingerprintability dataset [48] to
walkthrough pcapML. The dataset contains over 6,500 DTLS hand-
shakes collected to evaluate the indistinguishability of Snowflake, a
pluggable-transport for Tor that leverages WebRTC, with hand-
shakes from other WebRTC applications: Facebook messenger,
Google Hangouts, and Discord. As with many publicly released net-
work traffic datasets, the Snowflake dataset was originally released
with raw traffic files separated from metadata: a list of PCAP files,
one PCAP file for each traffic sample (handshake), and a CSV that
maps the traffic in each file to the application that generated the
handshake.

Traffic Inputs. We design pcapML to receive and process three
types of raw traffic inputs:

• A single PCAP.
• A directory of PCAPs.
• Live traffic.

When processed by pcapML, all input types results in a sin-
gle, portable output file: a metadata-encoded PCAPNG file. The
Snowflake dataset task corresponds to labeling a directory of PCAPs.
Listing 1 shows a sample of the Snowflake dataset on disk.

1 $ ls dataset/

2 ubuntu_chrome_discord_0.pcap

3 ubuntu_chrome_discord_1.pcap

4 ...

5 ubuntu_chrome_facebook_0.pcap

6 ubuntu_chrome_facebook_1.pcap

7 ...

8 ubuntu_firefox_snowflake_0.pcap

9 ubuntu_firefox_snowflake_1.pcap

10 ...

11 ubuntu_firefox_google_0.pcap

12 ubuntu_firefox_google_1.pcap

13 ...

Listing 1: A sample of the DTLS dataset in its originally
released format: one PCAP per traffic sample.

Metadata Inputs. pcapML ingests a metadata file along with the
raw traffic inputs in order to attach metadata to each traffic sample
(i.e., group of packets) in a given dataset. We design pcapML to
accept metadata files in pcapML follow a consistent CSV format,
with each record containing two or three columns:

• traffic_filter, which designates a filter that a set of pack-
ets will match and generally represents a single traffic sam-
ple.

• metadata designates the metadata that will be attached to
each packet that matches a specific traffic_filter.

• group_key, an optional third column that enables users to
generate traffic samples out of multiple traffic_filters
by overriding the default sampleID generation and associat-
ing all of the packets with the same group_key with a single
sampleID.

Traffic Filters. We have implemented three types of traffic filters
in pcapML:

• File: file filters are used when running pcapML on a directory
of PCAPs and map all the traffic in a single PCAP file to a
piece of metadata.

• BPF: BPF filters can be used to filter traffic, where every
packet that matches the BPF filter is associated with a piece
of metadata.

• Timestamps: timestamp filters map all of the traffic before a
given timestamp, after a given timestamp, or between two
timestamps to a piece of metadata.

pcapML also has the capability to combine BPF and times-
tamp filters. An example of the metadata file required to encode
the Snowflake dataset is shown in Listing 2. Each filter in the
traffic_filter column is simply prepended by the filter type.

1 $ cat metadata.csv

2 # traffic_filter ,metadata ,group_key

3 FILE:dataset/ubuntu_chrome_discord_0.pcap ,discord ,

4 FILE:dataset/ubuntu_chrome_discord_1.pcap ,discord ,

5 ...

6 FILE:dataset/ubuntu_chrome_facebook_0.pcap ,facebook ,

7 FILE:dataset/ubuntu_chrome_facebook_1.pcap ,facebook ,

8 ...

9 FILE:dataset/ubuntu_firefox_snowflake_0.pcap ,facebook ,

10 FILE:dataset/ubuntu_firefox_snowflake_1.pcap ,facebook ,

11 ...

12 FILE:ubuntu_firefox_google_0.pcap ,google ,

13 FILE:ubuntu_firefox_google_1.pcap ,google ,

14 ...

Listing 2: An example metadata file when using pcapml on
a directory of pcaps.

pcapML Operation. When run, pcapML first parses the metadata
file and generates a vector of traffic filters to be held in memory.
For each traffic filter, pcapML generates a unique sequential integer
sampleID starting from zero. pcapML originally used a hashing
function to generate sampleIDs for each traffic sample, but hashing
has drawbacks: shorter output lengths leave the opportunity for
hash collisions, while longer output lengths lead to inflated output
file size, as a sampleID is attached to each individual packet.

Next, pcapML reads in packets from the given input source,
searching the filter vector for matches. pcapML employs two meth-
ods for searching for a filter match: when matching FILE filters
(while processing a directory of PCAPs), pcapML loads in the sam-
pleID and metadata associated with all of the packets in the file
before processing in order to avoid vector lookup overhead for
each packet. Conversely, when matching BPF or timestamp filters,
pcapML linearly searches the filter vector until it finds a match. We
implemented a small optimization in the vector search by begin-
ning the search from the last matched filter, rather than searching
the vector from the beginning for all packets. This optimization
takes advantage of the bursty nature of traffic from hosts or in
flows, allowing for quick lookups for adjacent packets that match
identical filters without adding significant system complexity.

Finally, pcapML outputs each packet that matches a traffic fil-
ter to the designated output file, leveraging the PCAPNG packet
block options to encode the sampleID and metadata associated with
the packet in a sampleID,metadata UTF string. Listing 3 shows
that we can encode the Snowflake Fingerprintability dataset with
metadata using a single command.
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1 $ pcapml -D dataset/ -L metadata.csv -W dataset.pcapng

Listing 3: Encoding a datset with metadata using pcapml.

pcapML Output. pcapML outputs PCAPNG traffic capture files
that directly couple metadata and raw network trafficwhile meeting
the portability and compatibility requirements. The result of the
above command can still be parsed by popular tools such as tcpdump
and tshark as shown in Listing 4.

1 $ tcpdump -r dataset.pcapng

2 23:28:07.118693 IP 74.125.250.71.19305...

3 23:28:07.119460 IP 192.168.7.222.55937...

4 23:28:07.142124 IP 74.125.250.71.19305...

5 23:28:07.143005 IP 192.168.7.222.55937...

6 22:14:19.944334 IP 74.125.250.26.19305...

7 22:14:19.945955 IP 192.168.7.222.54537...

8 22:14:19.971409 IP 74.125.250.26.19305...

9 22:14:19.972218 IP 192.168.7.222.54537...

10 23:12:42.033739 IP 74.125.250.71.19305...

11 23:12:42.036166 IP 192.168.7.222.54510...

12 ...

Listing 4: pcapml-encoded files are portable to other tools.

Using tools with advanced PCAPNG functionality, such as
tshark, we can easily inspect the metadata encoded into the traffic
capture. As shown in Listing 5, we see the sampleID for each packet
is associated with (in this case, a DTLS handshake), followed by the
label for the traffic sample.

1 $ tshark -r dataset.pcapng -T fields -e frame.comment

2 0,google

3 0,google

4 0,google

5 0,google

6 1,google

7 1,google

8 1,google

9 1,google

10 2,google

11 2,google

12 ...

Listing 5: tools such as tshark can be used to inspect or
extract pcapML encoded datasets.

Sorting by SampleID. By default, pcapML outputs packets in the
order they are processed. When processing a directory of PCAPs
using file filters, the packets are naturally sorted by the sampleID as
the traffic samples are already split before being ingested. However,
when attaching metadata to a single PCAP or to live traffic, the
output PCAPNG is in timeseries order by default. As it is often
beneficial to sort the packets first by sampleID, and then by time
order; pcapML provides this functionality, shown in Listing 6.

1 $ pcapml -M unsorted_dataset.pcapng -s -W sorted_dataset.

pcapng

Listing 6: Sorting a pcapML encoded dataset.

Backwards Compatibility. Although pcapML-encoded PCAPNGs
are portable across many different tools and tasks, not every traf-
fic analysis system supports the PCAPNG traffic capture format.
As such, we have implemented functionality in pcapML to revert
pcapML-encoded PCAPNGs out to PCAPs, using one PCAP file per
traffic sample.

% Increase over PCAP

Metadata Size
(Bytes) Mean Min Max

1 8.7 5.1 12.3
5 8.1 3.8 13.3
10 10.3 4.6 19.1
20 12.0 4.6 24.2
40 16.3 6.5 29.4
80 19.3 11.1 27.8
160 30.3 17.1 51.1

Table 6: The disk overhead of pcapML encoded traffic cap-
tures generally increase with the size of the metadata.

When reverting, pcapML encodes the sampleID and metadata
for each traffic sample in the name of each PCAP file and outputs a
metadata CSV file containing a full mapping of PCAP files to their
associated metadata.

4.4 pcapML Overhead and Performance
In this section we evaluate the performance of pcapML in a va-
riety of dimensions, including the time it takes to label a variety
of datasets, the cost (in disk space) of attaching information to
every packet in a traffic capture, and the speed at which the public
implementation of pcapML can label live traffic.

pcapML Metadata Overhead. We first examine the overhead file
size cost of pcapML by setting up an experiment where we increase
the size of the metadata attached to each packet in a given traf-
fic capture. For this experiment, we leverage tcpreplay to replay
traffic and use the bigFlows.pcap capture to provide a traffic ex-
ample [5, 6]. The traffic capture contains almost 800,000 packets
across over 40,000 traffic flows and 132 applications with an average
packet size of 449 bytes.

We select 20 random source IP addresses (out of a possible 3,218
IP addresses in the capture) from the capture to tag with meta-
data. We use the BPF filtering mechanism in pcapML to tag all of
the traffic originating from the selected IP addresses, attaching a
static number of metadata bytes to each packet matching our filters.
Finally, we strip the resulting pcapML-encoded PCAPNG of the
metadata, transforming it into a PCAP in order to calculate the disk
overhead due to the metadata. We run the experiment 10 times for
each metadata size tested.

Table 6 shows the results of this experiment. As expected, we
see that the disk overhead of pcapML increases with the size of
the metadata to be attached to each packet. We also see that the
minimum and maximum size increases across the traffic varies
significantly.

Ultimately, a number of factors influence the size of the pcapML-
encoded PCAPNG file when compared to a PCAP without metadata.
First, the overhead of pcapML can increase due to a large number of
samples in a dataset. The number of bytes required to write higher
sampleID values to file increases with the number of samples to
be encoded. Second, the distribution of packet sizes can influence
the overhead cost of pcapML. A small number of large packets will
incur relatively lower overhead than a large number of smaller
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Dataset # Pcap Files Disk Size PcapML-Encoded
Size Stripped Pcap Size % Increase Over

Raw PCAP
Time To Encode

(Seconds)
Time To Split
(Seconds)

Active Case Study 274,009 1.1 GB 30 MB 25 MB 17 3 7
Application Case Study 5,787 33 MB 20 MB 18 MB 10 0.2 0.4
Cross Market Case Study 521 8.6 GB 8.8 GB 8.4 GB 5 12 21
netML IDS 558,884 12 GB 8.0 GB 7.4 GB 8 17 32
netML IoT 498,446 6.7 GB 5.9 GB 5.3 GB 10 13 30
netML Type of Traffic 158,355 18 GB 13 GB 12 GB 8 39 46
OS Case Study 124,390 529 MB 241 MB 187 MB 22 2 3
Video Case Study 20,980 330 MB 414 MB 288 MB 30 2 5

Table 7: pcapML can encode datasets in an efficient amount of time with overhead cost depending on the amount of metadata
to be attached.

sized packets. Finally, the size of the metadata to be attached to the
packet will influence the overhead cost of pcapML. As the metadata
is attached to each packet with the associated sampleID, larger
metadata can increase disk space overhead.

pcapML Overhead On Public Datasets. Next, we evaluate pcapML
on eight public datasets. These eight datasets were published by
Holland et al. [29] and represent both 1) a variety of tasks: including
device identification, application identification, intrusion detection,
and OS detection; and 2) a variety of traffic types: containing various
types of packets from DTLS traffic handshakes to UDP and TCP
traffic.

Table 7 examines the overheads and performance of using
pcapML on these eight datasets. First, we see that each dataset
was originally released as a set of PCAPs, one PCAP per traffic
sample. Table 7 includes both the number of files in the originally
formatted dataset and the size of the dataset on disk as reported by
du. Next, we see the size of the pcapML-encoded PCAPNG file after
processing the files using pcapML. In many cases, the size of the
dataset decreases significantly—this is a product of reducing the
number of files on disk, as filesystem block size overheads dominate
datasets with large numbers of files. In other cases, the size of the
dataset increases on disk when attaching metadata using pcapML.

Table 7 demonstrates the overhead cost across the eight encoded
datasets by stripping the pcapML-encoded PCAPNG of the attached
metadata and transforming it into a PCAP traffic capture. The cost
of attaching the sampleID and metadata to each of these datasets
ranges from 5 to 30%, depending on the factors previously discussed.
Finally, Table 7 reports the amount of time pcapML took to encode
the dataset and decode the dataset for backwards compatibility. We
see that even the largest dataset, containing 18GB of traffic, takes
less than a minute to encode and decode using pcapML.

pcapML Performance on Live Traffic. pcapML can capture and
attach metadata to traffic on a live network interface. This function-
ality can be useful for researchers who wish to run traffic experi-
ments as they can capture, label, and ID the traffic samples for their
experiment in real time. We measure the speeds which pcapML can
capture and attach metadata to incoming packets while avoiding
packet losses. pcapML leverages libpcap to read packets from an
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Figure 3: pcapML can encode metadata into live traffic in
configurations that satisfy many experimental use cases.

interface and uses a custom PCAPNG writer for matching and writ-
ing packets to disk. The existing implementation of pcapML uses a
single thread.1

We again leverage tcpreplay, and the same bigFlows.pcap
traffic capture as our previous experiment examining disk over-
head. We vary two input parameters. First, we vary the number
of samples that pcapML is attempting to tag. Recall that, for each
packet, pcapML must check each traffic filter in the vector until it
finds a match. As such, the time pcapML takes to check for a match
increases with the number of filters in the search vector. Next, we
vary the speed at which packets are replayed on the interface to
understand the processing capabilities of pcapML and at which
rates losses occur.

We run each individual (number samples, speed) configuration
five times and report the recorded loss of each combination. Figure 3
examines the results of the experiment in detail, showing the loss
for each configuration tested. We see that pcapML can generally
filter and tag live traffic at 1 Gbps with no loss for up to 256 defined
traffic samples. pcapML can tag up to 100 samples with zero loss,
but struggles with larger numbers of samples. Finally, pcapML can
1We anticipate that pcapML could be tuned and refactored for high performance
network environments using optimized packet capture libraries and concurrency. We
leave this for future work.
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tag live traffic at 4 Gbps for a lower number of samples (up to
64) with roughly zero loss. We note here that for many use cases,
such as capturing and labeling website traffic or device traffic, the
number of filters used in practice is likely much lower than 64. For
example, capturing and labeling traffic for a 5-tuple can be done in
a single traffic sample using the BPF filter functionality.

4.5 Enabling Analysis in Existing Pipelines
with pcapML-FE

The ultimate goal of many traffic analysis tasks is to extract in-
formation from a set of packets to identify sets of traffic samples,
such as identifying different devices on a network. A non-negligible
portion of traffic analysis work is done using python, along with
several popular libraries. To facilitate exploration of new analysis
methods and incorporation of pcapML into existing pipelines, we
have developed pcapML-FE, an open source tool which leverages
the standardized dataset format of pcapML to enable researchers
to focus on analysis, rather than dataset formatting.

pcapML-FE is a python modules that interfaces directly with
pcapML encoded datasets, exposing an iterator over individual
traffic samples and their associated metadata. pcapML-FE can trans-
form packets into popular python packet analysis libraries such as
scapy and dpkt [66, 74] in a single line of code. Finally, we point
out that one of the most important capabilities that pcapML-FE and
pcapML provides is simplifying the search for generalizable traffic
analysis methods. The standardized dataset format of pcapML and
standard interface of pcapML-FE enables researchers to test meth-
ods across datasets and tasks by simply loading in a new dataset.
Below is an example of pcapML-FE loading and iterating over the
Snowflake Fingerprintability dataset encoded with pcapML.

1 import argparse

2 import pcapml_fe

3 from pcapml_fe_helpers import *

4

5 def main():

6 parser = argparse.ArgumentParser ()

7 parser.add_argument('pcapml_dataset ')

8 args = parser.parse_args ()

9

10 for traffic_sample in pcapml_fe.sampler(args.

pcapml_dataset):

11 analysis_method(traffic_sample)

12

13 def analysis_method(sample):

14 print(sample.sid)

15 print(sample.metadata)

16

17 for pkt in traffic_sample.packets:

18 # Raw bytes and timestamp

19 print(pkt.ts, pkt.raw_bytes)

20 # Transform to Scapy packet in one line

21 spacket = scapy_readEther(pkt.raw_bytes)

Listing 7: pcapML-FE enables researchers to focus on
analysis methods. Testing an analysis method on a different
dataset only requires loading in a different pcapML encoded
dataset.

5 pcapML Benchmarks
pcapML represents a “narrow waist” in network traffic analysis,
providing a standardization solution for storing and processing
network traffic datasets. Such a narrow waist can be used for
broader impact by leveraging standardization to centralize and
track progress in the field. Along with pcapML, we have created
the pcapML benchmarks 2, an open source repository and public
leaderboard with the goal of centralizing and standardizing network
traffic analysis research. As of writing, the pcapML benchmarks
contain seven datasets across five discrete tasks, including web-
site fingerprinting, device identification, malware detection, and
application identification.

Any researcher or practitioner can add a new task, a new dataset,
or submit results of a method on one of the public leaderboards.
The only requirement being that each submitted task and dataset
be encoded with pcapML for standardization. For dataset curators,
the pcapML benchmarks provide a central repository to list their
datasets, tasks, and any initial results on the dataset, without having
to develop custom methods for storing and releasing each dataset.
For dataset users, the pcapML benchmarks ensure any methods
developed and evaluated can be directly compared with any other
technique using the same pcapML benchmark. Further, a central
repository of standardized datasets enables dataset users to easily
test methods on a variety of traffic analysis tasks, encouraging
researchers to create and evaluate generalizable methods. Finally,
for the field, a centralized benchmark repository provides an avenue
for tracking the progress of techniques, making it easier to discern
when a methodological breakthrough has occurred.

6 General Recommendations
We have highlighted issues that simultaneously inhibit reproducibil-
ity and innovation in network traffic analysis. While pcapML is an
initial solution for reproducible network traffic analysis, it is not
a panacea. Moving forward, we urge the community to consider
approaching this research area with a broader lens. Here we discuss
the different community stakeholders and their role in making net-
work traffic analysis research more reproducible, and subsequently
more impactful.

Dataset Creators. Dataset creators curate and release network
traffic datasets for the community to use, inherently guiding down-
stream research. The community must converge on a standard
dataset release format to enable sound research and lower the
barrier for new techniques to be developed. We have introduced
pcapML as a possible avenue for generating standard network traf-
fic datasets, but any format which meets the requirements outlined
in Section 3 would improve upon the current status quo.

Dataset Users. Dataset users play an equally important role in
improving reproducibility in network traffic analysis. Many traffic
analysis techniques report high levels of performance on a given
task (e.g., ≥ 90 precision) such as website fingerprinting or intru-
sion detection. As a field, we are entering an era of diminishing
returns as we near the point in which many existing methods and
techniques perform “well enough” for most tasks. New methods

2nprint.github.io/benchmarks
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are likely to represent relatively small, yet vitally important perfor-
mance increases. For instance, even performance increases of 1%
can denote a methodological advancement. However, without exact
comparisons of methods, such small performance increases can be
difficult to ascribe to a method versus other factors. A set of best
practices when performing analysis will enable the field to better
understand when a methodological advancement has occurred.

First, we must focus efforts on testing methods on full datasets
when possible. Due to the large number of samples found in many
network traffic datasets, it has become accepted to evaluate methods
on sampled versions of full network traffic datasets. This practice
can be dangerous due to the temporal nature of network traffic (i.e.,
events are not necessarily independent). If a dataset is sampled to
evaluate a method, either the sampled dataset must be re-encoded
and released, or in the case of pcapML, the sampleIDs used in
evaluation can easily be released. If machine learning techniques
are used for a task, releasing specific training and testing datasets
(or sampleIDs) will help to directly compare methods. Third, if a
dataset is leveraged for a purpose other than its original release,
such as re-labeling the traffic for a different task, the dataset should
be re-encoded and released to guarantee reproducible research.
Finally, when releasing pre-processed data, such as features used
to train a model, a direct link to the raw network traffic should be
traceable. For example, releasing a CSV of features which includes
a sampleID column will enable future work to better contextualize
new methods with old ones.

7 Related Work
This section explores recent standardization and reproducibility
work as well as work related to pcapML.

PCAPNG. The PCAPNG traffic capture format has been in de-
velopment since 2014. As such, research has leveraged the format
in a variety of ways. Le et al. leverage the PCAPNG file format
in AntMonitor, a system for monitoring mobile devices, to attach
mobile application names to raw packets [40]. Velea et al. also lever-
age the PCAPNG traffic capture format to encode pre-processed
feature information, such as the use of encryption, the protocol, and
the number of packets in a flow using a custom-developed block
option [82, 83]. In contrast to these works, our work focuses on
building a generalizable system for network traffic analysis tasks
by encoding arbitrary metadata onto packets.

Reproducibility and ML A trove of recent research has exam-
ined and highlighted irreproducibility across a variety of fields.
Most famously, the Open Science Collaboration highlighted the
reproducibility crisis in psychological science [21]. More recently,
much work has focused on the reproducibility of applied machine
learning research. Applied machine learning reproducibility fail-
ures have been brought to light in fields including: neuroimaging,
bioinformatics, medicine, software engineering, toxicology, radiol-
ogy, epidemiology, political science, and nutrition [3, 17, 20, 22, 30,
34, 45, 50, 60, 65, 79, 81, 90, 95].

Most related to ourwork is Arp et al.’s examination of appliedma-
chine learning in a variety of computer security research[9]. Arp et
al. examine the use of incorrect application of machine learning
techniques to a single intrusion detection dataset, demonstrating

the methods used in Mirsky et al. are likely overly complex for
the task [53]. In contrast, our work examines the area of network
traffic analysis more generally, demonstrating that any analysis per-
formed, not only machine learning, is irreproducible due to issues
existing before the analysis stage of a pipeline.

8 Conclusion
In this work we highlighted a reproducibility crisis facing net-
work traffic analysis research. We examined the usage of multiple
popular datasets, highlighting how the existing ecosystem leads
to researchers testing methods on different versions of the same
dataset. We then inspected the literature to outline the barriers
to reproducibility in the field, which we used to develop a list of
standardization requirements.

Given our findings, we introduced pcapML, an open source sys-
tem which meets the outlined requirements. pcapML standard-
izes dataset curation and usage by enabling researchers to directly
encode metadata into raw traffic traces, eliminating ambiguous
language and engineering errors that stem from the variety of
dataset formats that currently exist. We evaluate pcapML across
multiple dimensions, including the increase in dataset size when
encoding traffic datasets using pcapML and pcapML’s capability to
encode metadata into traffic in real-time. Finally, we demonstrate
the broader impact that standardization can have on the field by
creating the pcapML benchmarks, a public leaderboard website and
repository built to track the progress of methods in network traffic
analysis. Ultimately, we see pcapML and the pcapML benchmarks
as an avenue to propel the field forward, enabling rapid innovation
through centralization and standardization.
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