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Abstract. The Low Latency, Low Loss, Scalable Throughput (L4S) ar-
chitecture promises to reduce queuing delay while sustaining high through-
put. Prior work has largely evaluated L4S in synthetic environments or
controlled testbeds, leaving its real-world performance underexplored. In
this study, we measure L4S performance speci�cally on Apple services
delivered over Comcast residential networks. We deploy 83 Rasp-
berry Pi devices across Comcast subscriber households and conduct over
120000 controlled experiments comparing L4S to traditional congestion
control. Our results show that L4S reduces tail latency by up to 25%
for interactive applications and for bulk downloads from Apple's CDN,
while providing minimal gains for iCloud. Gains are most pronounced
during peak usage hours when networks are congested, highlighting the
situational bene�t of L4S in a single ISP ecosystem.

1 Introduction

The Internet is undergoing a fundamental shift in performance priorities. For
decades, throughput was the primary bottleneck, driving innovations in link ca-
pacity, backbone infrastructure, and content distribution. Today, with widespread
gigabit access and abundant bandwidth, latency has emerged as the critical
performance metric. Modern interactive applications (e.g., video conferencing,
cloud gaming, remote collaboration, and real-time communication) are increas-
ingly constrained not by available bandwidth, but by end-to-end delay and its
variability.

This shift poses a fundamental challenge for Internet congestion control,
which has historically optimized for throughput and fairness. Traditional Ac-
tive Queue Management (AQM) schemes and congestion signaling techniques
struggle to maintain low queuing delay under load, often forcing a tradeo� be-
tween latency and link utilization. The result is persistent bu�erbloat [6] and
unpredictable latency, even on high-capacity access links.

To address this, the Internet Engineering Task Force (IETF) has proposed the
Low Latency, Low Loss, Scalable Throughput (L4S) architecture [4,12], which



reimagines congestion control by enabling ultra-low queuing delay through scal-
able Explicit Congestion Noti�cation (ECN) marking and new transport be-
haviors. L4S introduces dual-queue AQMs (such as DualPI2 [13]) and transport
algorithms that respond more aggressively to ECN signals, aiming to keep queues
short while maximizing link utilization.

While L4S has been evaluated extensively in controlled testbeds and simula-
tions [3,9,14,7], its real-world performance remains largely unmeasured. This gap
is particularly critical as L4S transitions from research prototype to production
deployment. Recently, several major Internet players have begun enabling L4S:
Apple has integrated L4S support into iOS and macOS [1] for Facetime, iCloud,
and CDN downloads; NVIDIA has deployed L4S in its GeForce NOW cloud gam-
ing platform [11]; and Comcast has started provisioning residential customers
with L4S-capable dual-queue routers [5]. This emerging deployment creates an
unprecedented opportunity to measure L4S performance at scale in production
networks, under real tra�c conditions, with actual applications�measurements
that are impossible to replicate in controlled environments.

In this paper, we present the �rst large-scale, in situ measurement study of
L4S in a single production network. We deploy 83 Raspberry Pi measurement
nodes across Comcast residential broadband networks in the United States, con-
ducting over 120000 controlled experiments comparing L4S-enabled Apple ser-
vices (FaceTime, iCloud, and Apple CDN downloads) against their traditional
congestion control baselines. Our measurement methodology combines active
probing, packet-level instrumentation, and application-layer metrics to quantify
L4S impact on latency, throughput, packet loss, and application responsiveness
within Comcast s access network and under its real-world operating conditions.

Our key contributions are as follows:

� We design and deploy a large-scale measurement infrastructure spanning 83
residential networks to measure L4S performance in production, conducting
over 60,000 controlled experiments across diverse ISPs, access technologies,
and network conditions.

� We demonstrate that L4S bene�ts are highly context-dependent: tail latency
reductions of up to 25% for interactive applications occur primarily during
peak congestion hours, while bene�ts are minimal during o�-peak periods
and for certain application types (e.g., iCloud sync).

� We identify both the bene�ts and limitations of L4S in real-world deploy-
ments, including deployment challenges and coexistence concerns.

Our �ndings reveal that L4S delivers measurable latency improvements in
production, but its bene�ts are concentrated in speci�c contexts (e.g., congested
networks, peak hours, and latency-sensitive applications). These results provide
the �rst empirical evidence of L4S e�ectiveness at scale and highlight both the
promise and practical limitations of deploying low-latency congestion control in
the Internet.



2 Related Work

While L4S has received considerable attention in both academic and standard-
ization communities, most evaluations to date have been con�ned to testbeds
or simulations. This study complements prior work by providing an empirical
analysis of L4S performance in production networks with real-world tra�c.

Controlled testbed evaluations. Early empirical validation of L4S [3] focused
on fairness between scalable and classic congestion controls under controlled ex-
periments, demonstrating substantial queuing delay reductions while identifying
coexistence challenges when �ows share bottlenecks. Gra� et al. [7] evaluate
L4S in a custom platform that imitates cloud gaming, implementing the Self-
Clocked Rate Adaptation for Multimedia (SCReAM) algorithm under emulated
cellular conditions. Their work examines fairness and Quality of Service (QoS)
for synthetic tra�c, comparing L4S with class-based queuing. Monteiro et al. [8]
examine L4S in a private 5G industrial setting for real-time video streaming,
measuring latency, throughput, and video quality. They show signi�cant queu-
ing delay reductions under certain tra�c loads within their controlled network.
While these studies provide valuable insights into L4S behavior under speci�c
conditions, they rely on synthetic tra�c patterns and controlled environments.

Network-speci�c contexts. Srivastava et al. [14] investigate low-latency con-
gestion control protocols�TCP BBR and TCP Prague�over mmWave links,
which experience frequent capacity drops due to blockage and rapid variations.
Their results show that while these protocols reduce queueing delay under many
conditions, fairness issues emerge (some �ows starve), and frequent capacity
disruption limits achievable latency improvements. This work highlights how
speci�c link characteristics constrain L4S bene�ts, though in controlled rather
than production settings.

Architectural and instrumentation perspectives. Complementary work
has explored L4S from architectural and measurement perspectives. Szilveszter
et al. [9] challenge the tight coupling between L4S and speci�c scalable conges-
tion control algorithms, introducing a scheduler that delivers low-latency service
regardless of sender congestion control. Their primarily algorithmic work, eval-
uated in controlled settings, demonstrates the feasibility of decoupling architec-
tural bene�ts from end-host adoption. Nguyen et al. [10] leverage programmable
data planes to observe and validate L4S �ow behavior in �ne-grained detail,
building a P4-based framework with in-band network telemetry that captures
per-packet latency and congestion signals. Their focus on data plane instrumen-
tation provides valuable tools for debugging and validation.

Our contribution. In contrast to these controlled and instrumentation-focused
studies, we provide large-scale, in-situ measurements of L4S across residential
broadband deployments. We quantify end-to-end performance that end-users
experience with L4S-enabled commercial Apple services over Comcast networks,
using live tra�c from geographically distributed devices. This empirical anal-
ysis reveals how L4S performs under real-world conditions, including varying
congestion levels, diverse service types, and partial deployment scenarios.



3 Methodology

We design a measurement campaign to assess L4S performance in real-world en-
vironments across representative application scenarios. Our study systematically
compares tra�c using L4S-enabled congestion control against traditional queue-
ing. We focus on three categories of Apple services that span latency-sensitive
and throughput-oriented applications: (i) Apple CDN downloads, (ii) iCloud,
and (iii) FaceTime. These services were selected because Apple has recently
enabled native L4S support across its application stack and content delivery in-
frastructure, providing a rare opportunity to evaluate L4S in production condi-
tions with unmodi�ed end systems. Moreover, they collectively represent distinct
transport behaviors: Apple CDN downloads produce long-lived, high-throughput
transfers that reveal how L4S handles sustained congestion; iCloud downloads
exhibit short, bursty synchronization �ows typical of background tra�c; and
FaceTime calls generate continuous, interactive streams that stress low-latency
performance.

3.1 Experimental Design

For each service, we de�ne reproducible test procedures executed periodically
under two network con�gurations:

1. L4S-enabled: ECN with ECT(1) marking and Dual Queue support on the
access link, enabling scalable congestion control.

2. Non-L4S: Conventional congestion control without ECN or with classic
ECN (ECT(0)).

We employ a paired testing approach where L4S and non-L4S measurements
execute in immediate succession (i.e., within 60 seconds) to minimize temporal
variability. This design controls for time-of-day e�ects, transient congestion, and
routing changes that could confound comparisons. Each paired test alternates
the order (L4S-�rst vs. non-L4S-�rst) to account for potential ordering e�ects.

3.2 Measurement Procedures

We instrument each service type to collect network and application-layer metrics:

Apple CDN download tests.We download large media �les (480 MB) hosted
on Apple CDN infrastructure using HTTP/2 over TCP or HTTP/3 over QUIC.
We measure time-to-�rst-byte (TTFB), total transfer time, achieved throughput,
and path-level RTT. This workload represents high-throughput, non-interactive
usage.

iCloud tests. We trigger downloads of 500 MB �les through a headless iCloud
client session, ensuring repeatable transfer sizes. We log application-layer through-
put and TCP RTT. Network-layer measurements include congestion window
evolution and ECN activity (ECT/CE markings).

FaceTime tests.We establish automated two-party video calls and use passive
packet capture (tcpdump) to measure call establishment time, ECN markings,



Fig. 1: Geographical distribution of deployed devices across the United States

and packet loss. These metrics quantify the impact of queue management and
congestion control on real-time interactive performance.

3.3 Measurement Infrastructure

We deploy a distributed measurement infrastructure consisting of 83 Raspberry
Pi devices in volunteer residential homes across the United States (Figure 1). We
manage the �eet remotely using the openBalena [2] platform, enabling over-the-
air software updates, con�guration management, and centralized logging without
requiring on-site intervention.

All volunteer homes subscribe to Comcast X�nity residential broadband ser-
vice with advertised speeds up to 1 Gbps downstream and 300 Mbps upstream.
Critically, Comcast has deployed routers with dual-queue AQM support in these
homes, satisfying the infrastructure requirements for L4S operation. Each de-
vice connects via Ethernet to the home router, ensuring stable connectivity and
minimizing wireless interference in measurements.

Devices are geographically distributed across multiple US regions to capture
diverse network conditions including varying ISP peering relationships, regional
congestion patterns, and path characteristics. Each device executes the mea-
surement procedures described in Section 3, alternating between L4S-enabled
and non-L4S con�gurations. Measurements run autonomously 24/7, capturing
diurnal tra�c patterns and congestion dynamics.

3.4 Final Dataset

Tests execute every 3 hours across a 48-week measurement period, yielding ap-
proximately 2688 paired measurements per service type per deployment site.6 We
schedule tests to capture diurnal patterns. Each test cycle generates structured
logs containing: timestamps, ECN counters, �ow-level statistics, and application

6 Data collection was progressively activated across devices and services; consequently,
not all nodes or applications contributed measurements during the exact same time
intervals.



Table 1: Summary of the dataset.
Collection period Nov. 1st 2024 � Sep. 30th 2025
Country United States of America
Number of homes 83
Experiments per service per day 8
Total experiments per service Apple CDN (50000); iCloud (35000); Face-

Time (35000)

Collected metrics Latency (ms); Throughput (Mbps); ECN
marking

metrics. We aggregate measurements centrally for post-processing and analy-
sis. Table 1 summarizes the key characteristics and statistical properties of the
resulting dataset.

3.5 Limitations

Our measurement methodology has several limitations that constrain the gener-
ality of our �ndings. First, our deployment covers only a single ISP (Comcast)
and uses L4S-capable home routers provisioned by the operator; thus, our obser-
vations re�ect Comcast's access-network con�guration and may not generalize to
other ISPs. Second, we measure only Apple services, whose L4S and congestion-
control behaviors are speci�c to Apple's ecosystem and may di�er from other
applications. Third, we cannot directly verify dual-queue AQM across the en-
tire path; instead, we infer queue behavior from ECN markings and end-host
congestion-control signals. Although end devices connect via Ethernet to the
home router, bottlenecks may still arise upstream in the access or aggregation
network, and our methodology cannot always isolate their location. Fourth, vol-
unteer access-link speeds exceed those of many broadband users, reducing the
likelihood of persistent queueing and limiting opportunities for L4S mechanisms
to engage. Finally, we do not introduce controlled cross-tra�c or engineered coex-
istence scenarios; results therefore re�ect real-world but uncontrolled residential
tra�c mixes. These constraints do not invalidate our �ndings but do bound their
applicability, and we make these assumptions explicit to guide interpretation.

Ethical Considerations. This work does not raise ethical concerns. Volunteers
provided informed consent, and we collect only anonymized network measure-
ments via triggered tests, not user application data or any personally identi�able
information. All data is stored securely, and volunteers can withdraw from the
study at any time.

4 Results

We present empirical results from our deployment, analyzing over 60,000 paired
measurements across 83 residential sites to assess L4S performance in produc-
tion. We focus on tail latency (99th percentile) as the primary metric, given its
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Fig. 2: ECDFs of di�erences in 99th-percentile latency for Apple CDN download
by time of day. Negative values indicate L4S reduces tail latency compared to
classic congestion control. (50000 datapoints)

−100 −50 0 50 100
Δ (ms)

0

100

200

300

400

Co
un

t

(a) Histogram of p99 la-
tency di�erences

0 50 100 150 200
Latency (ms)

0

 5K

10K

Ex
pe

rim
en

t

L4S Faster
L4S Slower

(b) Per-experiment latency
comparison

−20 0 20 40
Latency Improvement (%)

0

100

200

Th
ro

ug
hp

ut
 (M

bp
s)

25

50

75

100

125

Nu
m

be
r o

f p
oin

ts

(c) Correlation between
latency improvement and
throughput

Fig. 3: Apple CDN download per-experiment analysis showing tight distribution
of improvements and consistent L4S advantage (blue lines indicate L4S reduces
latency).

importance for interactive applications and user-perceived quality. We examine
how L4S bene�ts vary across service types, time of day, and network conditions.
We introduce the shorthand notation ∆ = p99(L4S)− p99(Classic Queue) as the
di�erence in 99th-percentile latencies between L4S and classic queue.

4.1 Apple CDN Download: Bulk Transfer Performance

We begin with Apple CDN download tests to evaluate how L4S performs under
sustained, throughput-oriented tra�c, where long-lived �ows are most likely to
experience queue buildup and bene�t from dual-queue scheduling. Grouping the
data by time of day allows us to capture diurnal variations in access-network
congestion, revealing whether L4S advantages persist across both lightly and
heavily loaded periods.

Aggregate Latency Improvements Across Time Periods. Figure 2 shows
the empirical cumulative distribution of p99 latency di�erences for Apple CDN
downloads across three time periods. Negative values indicate L4S reduces tail
latency. L4S-enabled hosts (blue) consistently achieve lower p99 latency, with
distributions shifted left of zero across all periods. During morning and after-
noon, approximately 80% of L4S hosts experience latency reductions. Non-L4S



hosts (green) show �atter distributions centered near zero, indicating negligible
improvement. The aggregate across all hosts (black) follows the L4S trend, con-
�rming bene�ts stem primarily from L4S-capable endpoints. Importantly, these
improvements are not con�ned to a few favorable sites: similar left-shifted dis-
tributions are observed across the majority of deployment locations, suggesting
that the latency improvements are robust and broadly consistent rather than
driven by outliers or site-speci�c network conditions. During evening peak hours
(06:00pm - 00:00am), absolute L4S improvements decrease slightly but remain
substantial. Critically, the separation between L4S and non-L4S hosts widens
considerably: the gap between blue and green curves increases on average from
8 ms (afternoon) to 20 ms (evening). This suggests that while absolute gains
diminish under heavy load, L4S maintains a signi�cant advantage over classic
congestion control precisely when networks are most congested.

Consistency and Throughput Correlation. To validate the aggregate trends,
we examine per-experiment variability through histograms of p99 latency di�er-
ences and comparison plots summarizing the direction and magnitude of change
across all experiments. These views reveal consistency and outlier behavior across
our measurement campaign. The histogram (Figure 3a) shows a tight distribu-
tion centered just below zero, with most samples clustered between -10 ms and
0 ms. The pairwise plot (Figure 3b) con�rms this with blue lines (L4S reduces
latency) dominating across all sites and time periods. This consistency suggests
that bulk download tra�c reliably triggers queue buildup where L4S excels. Fig-
ure 3c shows that these latency improvements are not achieved at the expense of
throughput. The scatter distribution shows no negative correlation between la-
tency reduction and achieved throughput: experiments with strong latency gains
sustain similar or even slightly higher throughput levels. This demonstrates that
L4S achieves lower delay without compromising bulk-transfer e�ciency, under-
scoring its e�ectiveness in balancing throughput and responsiveness under real-
world conditions.

4.2 iCloud Download: Bursty Transfer Performance

We next analyze iCloud download to assess how L4S behaves for short �ows that
di�er fundamentally from sustained bulk transfers.

Aggregate Latency Improvements Across Time Periods. In contrast to
Apple CDN downloads, iCloud tra�c shows minimal L4S bene�t (Figure 4).
The L4S (blue) and non-L4S (green) distributions overlap substantially across
all time periods, with both centered near zero di�erence. During afternoon and
evening, the curves nearly coincide, with median change near 1 ms. This negligi-
ble improvement suggests that L4S provides little advantage for services that are
tuned for synchronization. We attribute this to iCloud's tra�c characteristics.
Unlike sustained bulk transfers, iCloud is synchronization-oriented that consists
of bursty, chunked uploads/downloads with application-layer rate limiting. These
short bursts may not build su�cient queue depth for L4S's precise congestion
signaling to yield measurable bene�ts. Additionally, iCloud tra�c may use back-
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Fig. 4: ECDFs of di�erences in 99th-percentile latency for iCloud download by
time of day. L4S and non-L4S distributions largely overlap. (35000 datapoints)
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Fig. 5: iCloud download per-experiment analysis showing symmetric distribution
and mixed results (balanced blue/red lines indicate no systematic L4S bene�t).

ground priority classes that avoid saturating links, further limiting opportunities
for queue buildup. The lack of time-of-day variation (similar performance dur-
ing peak and o�-peak hours) supports this interpretation; iCloud tra�c does not
stress the network enough to bene�t from improved queue management.

Consistency and Throughput Correlation. The histogram (Figure 5a) ex-
hibits a wider, symmetric distribution centered near 0 ms for iCloud. Both im-
provements (negative) and degradations (positive) appear with roughly equal
probability. The pairwise plot (Figure 5b) shows balanced blue and red lines,
con�rming no systematic L4S advantage. The high variability suggests that
iCloud performance depends on factors orthogonal to queue management, i.e.,
application-layer behavior and tra�c patterns. Figure 5c reveals no consistent
correlation between throughput and latency improvement, indicating that L4S
e�ects are largely independent of bulk-transfer rate. Unlike Apple CDN down-
loads, where latency gains align with sustained throughput, iCloud experiments
show a highly scattered pattern: several tests even display positive latency di�er-
ences (i.e., higher latency under L4S) at moderate throughputs. This dispersion
suggests that the short-lived, bursty nature of iCloud tra�c prevents L4S from
establishing stable dual-queue dynamics, limiting its ability to realize queueing-
delay reductions. Overall, the absence of a clear trend reinforces that L4S ben-
e�ts are workload dependent�e�ective for steady, congestion-prone �ows but
less impactful for sporadic, background exchanges.
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Fig. 6: ECDFs of di�erences in 99th-percentile call establishment time for Face-
Time by time of day. L4S consistently reduces latency, especially during peak
hours. (35000 datapoints)
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Fig. 7: FaceTime per-experiment analysis showing broader distribution with
heavy left tail and strong L4S advantage during peak periods

4.3 FaceTime: Real-Time Interactive Performance

Having examined L4S behavior for throughput-oriented services, we now turn to
FaceTime, a latency-critical application. FaceTime's performance is dominated
by real-time delay sensitivity, making it an ideal test case to assess L4S bene�ts
under human-perceptible latency constraints.

Aggregate Latency Improvements Across Time Periods. Figure 6 shows
consistent L4S bene�ts across all time periods. The e�ect is relatively stable
across morning, afternoon, and evening, with improvements of roughly 8 ms
compared to classic, suggesting the service bene�ts from L4S even under moder-
ate load. Non-L4S hosts (green) show substantially worse performance, partic-
ularly during afternoon and evening periods where distributions shift rightward
(indicating latency increases). The separation between L4S and non-L4S curves
widens during peak hours, reaching 10 ms in the evening. This pattern suggests
that interactive real-time applications derive greater relative bene�t from L4S
under congestion�precisely when low latency is most critical for user experience.

Consistency and Per-experiment Validation. Figure 7a displays a broader
distribution with heavy left tail extending to −50 ms, indicating substantial im-
provements for a subset of experiments. Figure 7b shows a clear dominance of
blue lines, indicating that L4S consistently improves connection setup latency



across most experiments. Improvements are concentrated around the lower la-
tency range (below 100 ms), consistent with FaceTime's real-time nature and
short �ow durations. The limited number of red outliers suggests that L4S rarely
degrades performance, and when it does, the magnitude of regression is small.
Overall, the results con�rm that L4S provides reliable latency reduction for inter-
active, delay-sensitive tra�c, validating its suitability for real-time applications
like video conferencing.

Main takeaways: Across all analyses, our �ndings reveal that L4S e�ec-

tiveness strongly depends on the tra�c characteristics of each service. For

Apple CDN downloads, L4S consistently lowers tail latency for bulk trans-

fers, con�rming that dual-queue mechanisms are most e�ective when �ows

sustain congestion long enough for ECN signaling to stabilize. For iCloud

downloads, however, the impact remains negligible, as short, bursty synchro-

nization �ows seldom trigger persistent queue buildup. Finally, FaceTime

demonstrates meaningful latency reductions, particularly during peak hours,

validating L4S's value for interactive, real-time communication. Overall,

these results show that L4S delivers tangible bene�ts where persistent con-

gestion or latency sensitivity dominate performance, but o�ers limited gains

for transient, low-volume tra�c.

5 Conclusion

We present the �rst large-scale, in situ measurement study of L4S in produc-
tion residential broadband networks. Deploying 83 devices across US Comcast
networks and conducting over 60,000 paired experiments, we quantify L4S per-
formance for three representative Apple services: Apple CDN, iCloud and Face-
Time.

Our key �ndings reveal substantial but service-dependent L4S bene�ts. Face-
Time and CDN downloads experience consistent tail latency reductions up to
25%, with advantages most pronounced during evening peak hours (20 ms for
CDN, 10 ms for FaceTime) when non-L4S performance degrades. In stark con-
trast, iCloud shows negligible bene�t, with L4S and non-L4S distributions over-
lapping across all periods. This disparity reveals a critical insight: L4S e�ective-
ness requires sustained queue buildup; while bursty, application-paced tra�c
cannot bene�t from improved queue management. The widening performance
gap during congestion suggests L4S successfully isolates latency-sensitive �ows
from the e�ects that degrade classic congestion control.

Our results provide evidence of L4S's practical value for interactive and bulk
transfer workloads, while identifying deployment contexts where bene�ts may
not materialize. As L4S adoption expands in commercial services and ISP infras-
tructure, our measurement methodology and empirical �ndings o�er guidance
for operators and application developers assessing L4S deployment value.
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A Controlled vs. Inferred Assumptions

This appendix summarizes which aspects of our ECN/L4S measurement method-
ology are controlled (i.e., known with certainty based on our deployment and
instrumentation) and which aspects are inferred from observable tra�c charac-
teristics. These apply uniformly across all three workloads (Apple CDN, iCloud,
and FaceTime).

A.1 Controlled Aspects

� L4S-capable home routers. Comcast provides an up to date list of vol-
unteers provisioned with home routers that are L4S-capable.

� L4S-capable measurement device. All experiments run on Raspberry Pi
devices whose Linux kernel includes L4S-capable congestion control and ECN
support.

� Explicit enable/disable control for L4S. Our measurement client con-
trols whether L4S is enabled or disabled at the end device. This con�guration
is set deterministically by our code for each experiment.

� Apple services implement L4S. The Apple CDN, iCloud, and Face-
Time services we measure implement L4S semantics and set ECT(1) for
L4S-capable �ows.

A.2 Inferred Aspects

� End-to-end L4S support.We do not know whether all intermediate hops
between Apple servers and our Raspberry Pi devices support or preserve
L4S behavior.

� Queue behavior and AQM con�guration.We infer queueing behavior�
including possible dual-queue operation�indirectly from ECN codepoints
observed in received packets and from endpoint TCP state.

� Bottleneck. Congestion may arise upstream in the access or aggregation
network, and we cannot always isolate the precise bottleneck.

B Summary Statistics and Baseline Distributions

To complement our tail-latency analysis and provide baseline context, we report
descriptive statistics for each service under both L4S and Classic con�gurations.
These values summarize typical latency levels and their variability. In Table 2,
we present the mean, median, p90, interquartile range (IQR), and standard de-
viation (StdDev) for Apple CDN downloads, iCloud, and FaceTime call estab-
lishment time. These baseline statistics contextualize the tail behavior discussed
earlier in Section 4 and help quantify how representative the tail di�erences are
relative to the overall distribution.



Table 2: Baseline summary statistics (ms).
Service Con�guration Mean Median p90 IQR StdDev
Apple CDN Classic Queue 25.47 22.66 38.40 9.52 10.40

L4S 24.65 18.97 35.92 10.20 39.99
iCloud Classic Queue 27.46 18.34 47.98 14.92 58.89

L4S 24.47 18.64 45.57 13.83 34.68
FaceTime Classic Queue 39.28 31.98 76.87 42.36 31.57

L4S 33.66 24.3 71.86 28.39 28.84
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