
OCDN: Oblivious Content Distribution Networks

Anne Edmundson, Paul Schmitt, Nick Feamster, Jennifer Rexford
Princeton University

Abstract— As publishers increasingly use Content Distribution Net-
works (CDNs) to distribute content across geographically diverse net-
works, CDNs themselves are becoming unwitting targets of requests for
both access to user data and content takedown. From copyright infringe-
ment to moderation of online speech, CDNs have found themselves at the
forefront of many recent legal quandaries. At the heart of the tension,
however, is the fact that CDNs have rich information both about the con-
tent they are serving and the users who are requesting that content. This
paper offers a technical contribution that is relevant to this ongoing ten-
sion with the design of an Oblivious CDN (OCDN); the system is both
compatible with the existing Web ecosystem of publishers and clients and
hides from the CDN both the content it is serving and the users who are
requesting that content. OCDN is compatible with the way that pub-
lishers currently host content on CDNs. Using OCDN, publishers can
use multiple CDNs to publish content; clients retrieve content through a
peer-to-peer anonymizing network of proxies. Our prototype implemen-
tation and evaluation of OCDN show that the system can obfuscate both
content and clients from the CDN operator while still delivering content
with good performance.

I. INTRODUCTION

As Content Distrubtion Networks (CDNs) host an increasing
amount of content from a diversity of publishers, they are fast
becoming targets of requests for data about their content and
who is requesting it, as well as requests for takedown of ma-
terial ranging from alleged copyright violations to offensive
content. The shifting legal and political landscape suggests that
CDNs may soon face liability for the content that they host. For
example, the European Union has been considering laws that
would remove safe harbor protection on copyright infringement
for online service providers if they do not deploy tools that can
automatically inspect and remove infringing content [18]. In
the United States, various laws under consideration threaten
aspects of Section 230 of the Communications Decency Act,
which protects CDNs from federal criminal liability for the
content that they host. Tussles surrounding speech, from copy-
right violations to hate speech, are currently being addressed
in the courts, yet the legal outcomes remain ambiguous and
uncertain, sometimes with courts issuing opposing rulings in
different cases. Regardless of these outcomes, however, CDNs
are increasingly in need of technical protections against the
liability they might face as a result of content that they (perhaps
unwittingly) serve.

Towards this end, we design and implement a system that
allows clients to retrieve web objects from one or more CDNs,
while preventing the CDNs from learning either (1) the content
that is stored on the cache nodes; or (2) the content that clients
request. We call this system an oblivious CDN (OCDN), be-
cause the CDN is oblivious to both the content it is storing and
the content that clients request.

OCDN allows clients to request individual objects with iden-
tifiers that are encrypted with a key that is shared by an open
proxy and the origin server that is pushing content to cache

nodes, but is not known to any of the CDN cache nodes. To
do so, the origin server publishes content obfuscated with a
shared key, which is subsequently shared with a proxy that is
responsible for routing requests for objects corresponding to
that URL. A client forwards a request for content through a set
of peers (i.e., other OCDN clients) in a way that prevents both
other clients and the CDN from learning the client identity or
requested content. After traversing one or more client prox-
ies, an exit proxy transforms the URL that it receives from a
client to an obfuscated identifier using the key that is shared
with the origin server corresponding to the identifier. Upon
receiving that request from the exit proxy, the CDN returns
the object corresponding to the object identifier; that object is
encrypted with a key that is shared between the origin and the
proxy. This approach allows a user to retrieve content from a
CDN without any node in the CDN ever seeing the URL or
the corresponding content, or even knowing the identity of the
client that made the original request. Using OCDN requires
only minimal modification to existing clients; clients can also
configure aspects of the system to trade off performance for
privacy.

Ensuring that the CDN operator never learns information
about either (1) what content is being stored on its cache nodes
or (2) which objects individual clients are requesting is chal-
lenging, due to the many possible inference attacks that a CDN
might be able to mount. For example, previous work has
shown that even when web content is encrypted, the retrieval
of a collection of objects of various sizes can yield information
about the web page that was being retrieved [7, 32]. Similarly,
URLs can often be inferred from relative popularity in a distri-
bution of web requests, even when the requests themselves are
encrypted. Additionally, the OCDN design assumes a strong
attack model (Section III), whereby an adversary can request
logs from the CDN, interact with OCDN as a client, a proxy,
or a publisher, and mount coordinated attacks that depend on
multiple such capabilities. Our threat model does not include
active attempts to disrupt the system (e.g., blocking access to
parts of the system, mounting denial of service attacks), but it
includes essentially any type of attack that involves observing
traffic and even directly interacting with the system as a client
or a publisher.

The design of OCDN (Section IV) under such a strong attack
model entails many unique aspects and features. Because the
system allows any client to join as a proxy, even setting up the
infrastructure is challenging. For example, an attacker could
try to join the system as a proxy with the intent of proxying for
specific web content, in an attempt to either disrupt or surveil
those requests. To counter this threat, OCDN uses consistent

1

ar
X

iv
:1

71
1.

01
47

8v
1

 [
cs

.N
I]

 4
 N

ov
 2

01
7

hashing to map object identifiers (i.e., URLs) to the proxy
responsible for ultimately routing traffic to the CDN that hosts
the object; to ensure that publishers only communicate keys
to the proxies responsible for their content, each proxy must
prove its identity to the respective publisher using a proof that
relies on a self-certifying identifier.

Requesting and retrieving content, a process that we describe
in detail in Section V, is challenging since neither the CDN nor
the proxy must know which client originated a request for a
specific piece of content. The key exchange between an origin
server and its respective proxy protects the confidentiality of
both the content and the identifier (i.e., the URL) from the
CDN. To obfuscate the source of the original request, clients
construct a source route to an exit proxy, but the route can be
prepended with proxies that precede the client who originated
the request. To defend against various inference attacks, as
well as to balance load, the OCDN design allows publishers to
use multiple CDNs to distribute the same content, ensuring that
no single CDN has access to information such as the relative
popularity distribution of all objects. To ensure that no single
proxy learns the request pattern for a single object, as well as
to balance load, the design also can also use consistent hashing
to assign a set of proxes to a single object.

The design of OCDN against a strong adversary is a major
contribution of this work; additionally, we have also imple-
mented OCDN (Section VI) and publicly released the source
code. Section VIII studies the performance implications of
the tradeoffs between performance and privacy, as well as how
OCDN performs relative to a conventional CDN; Section VII
analyzes how OCDN defends against threats from our adver-
sary. IX describes various limitations and possible avenues for
future work, Section X discusses related work, and Section XI
concludes.

II. BACKGROUND

We now outline how a CDN typically operates, including what
information it has access to by virtue of running a CDN. We
also discuss some of the ongoing legal questions that CDNs
currently face.

A. Content Distribution Networks

CDNs provide content caching as a service to content publish-
ers. A content publisher may wish to use a CDN provider for
several reasons:

• CDNs cache content in geographically distributed lo-
cations, which allows for localized data centers, faster
download speeds, and reduces the load on the content
publisher’s server.
• CDNs typically provide usage analytics, which can help

a content publisher get a better understanding of usage
as compared to the publisher’s understanding without a
CDN.
• CDNs provide a high capacity infrastructure, and there-

fore provide higher availability, lower network latency,
and lower packet loss.
• CDNs’ data centers have high bandwidth, which allows

them to handle and mitigate DDoS attacks better than the
content publisher’s server.

Clients

CDN Origin Server

CDN can see
responses

CDN can see
content

Figure 1: The relationships between clients, the CDN, and content publishers
in CDNs today.

CDN providers usually have a large number of edge servers
on which content is cached; for example, Akamai has more
than 216,000 servers in over 120 countries around the world [3].
Having more edge servers in more locations increases the
probability that a cache is geographically close to a client, and
could reduce the end-to-end latency, as well as the likelihood of
some kinds of attacks, such as BGP (Border Gateway Protocol)
hijacking. This is evident when a client requests a web page;
the closest edge server to the client that contains the content is
identified and the content is served from that edge server. Most
often, this edge server is geographically closer to the client
than the content publisher’s server, thus increasing the speed
in which the client receives the content. If the requested page’s
content is not in one of the CDN’s caches, then the request is
forwarded to the content publisher’s server, the CDN caches
the response, and returns the content to the client.

B. What CDNs Can See

Because the CDN interacts with both content publishers and
clients, as shown in Figure 1, it is in a unique position to learn
an enormous amount of information. CDN providers know
information about all clients who access data stored at the CDN,
information about all content publishers that cache content at
CDN edge servers, and information about the content itself.

Content. CDNs, by nature, have access to all content that
they distribute, as well as the corresponding URL. First, the
CDN must use the URL, which is not encrypted or hidden,
to locate and serve the content. Therefore, it is evident that
the CDN already knows what content is stored in its caches.
Because CDNs provide analytics to content publishers, they
keep track of cache hit rates, and how often content is accessed.
The CDN does not only knows about the content identifier;
it also also has access to the plaintext content. A CDN per-
forms optimizations on the content to increase performance;
for example, CDNs minimize CSS, HTML, and JavaScript
files, which reduces file sizes by about 20%. They can also
inspect content to conduct HTTPS re-writes; we discuss how
OCDN handles these types of optimizations in Section IX. In
addition, requesting content via HTTPS does not hide any in-
formation from the CDN; if a client requests a web page over
HTTPS, the CDN terminates the TLS connection on behalf
of the content publisher. This means that not only does the
CDN know the content, the content identifier, but also it knows

2

public and private keys, as well as certificates associated with
the content it caches.
Client information. Clients retrieve content directly from
the CDN’s edge servers, which reveals information about the
client’s location and what the client is accessing. CDNs can
also see each client’s cross-site browsing patterns: CDNs host
content for many different publishers, which allows them to see
content requests for content published by different publishers.
This gives an enormous amount of knowledge to CDNs; for ex-
ample, Akamai caches enough content around the world to see
up to 30% of global Internet traffic [2]. The implications of a
CDN having access to this much information was evident when
Cloudflare went public with the National Security Letters they
had received [14]; these National Security Letters demanded
information collected by the CDN and also included a gag
order, which prohibits the CDN from publicly announcing the
information request.
Content publisher information. A CDN must know informa-
tion about their customers, the content publishers; the CDN
keeps track of who the content publisher is and what the pub-
lisher’s content is. The combination of the CDN seeing all con-
tent in plaintext and the content’s linkability with the publisher,
gives the CDN even more power. Additionally, as mentioned
previously, the CDN often holds the publisher’s keys (includ-
ing the private key!), and the publisher’s certificates. This has
led to doubts about the integrity of content because a CDN can
impersonate the publisher from the client’s point of view [27].

C. Open Legal Questions

Various parties are battling in the courts over cases that pertain
to user data requests and intermediary liability. Large compa-
nies often have large numbers of users, which makes them a
target of data requests, for example by a government entity.
Intermediary liability would impose criminal liability on an
Internet platform (or a CDN) for the content it provides on
behalf of its customers or users. In the following section, we
highlight some of these cases, which all point to a key problem
that CDNs face: by knowing all the content that they distribute,
CDNs may be burdened with the legal responsibility for the
actions of their customers and clients.
User Data Requests. There are numerous open questions in
the legal realm regarding which government can request data
stored in different countries, which has led to much uncertainty.
A series of recent events have illustrated this uncertainty. In
the struggle over government access to user data, cases such
as Microsoft vs. United States (often known as the “Microsoft
Ireland Case”) concerns whether the United States Government
should have access to data about U.S. citizens stored abroad,
given that Microsoft is a U.S. corporation.

Additionally, there have been user data requests asked of
CDNs. The Cloudflare CDN has been required to share data
with FBI [14]; similarly, leaked NSA documents showed that
the government agency “collected information ‘by exploiting
inherent weaknesses in Facebook’s security model’ through its
use of the popular Akamai content delivery network” [20].
Intermediary Liability. More recently, questions on interme-
diary liability have been in the spotlight. For example, many

groups, including the Recording Industry Association of Amer-
ica (RIAA) and the Motion Picture Association of America
(MPAA), have started targeting CDNs with takedown notices
for content that allegedly infringes on copyright, trademarks,
and patent rights; CDNs are a more convenient target of these
takedown notices than the content provider because oftentimes
the content provider is either located in a jurisdiction where it is
difficult to enforce the takedown, or it is difficult to determine
the owner of the content [12, 13]. Although Section 230 of the
Communications Decency Act protects intermediaries, such as
CDNs, from being held liable for the content they distribute,
there have been cases where CDNs are forced to remove con-
tent. This happened in 2015, as mentioned in Section II.B,
which involved the RIAA, Cloudlfare, and Grooveshark [1].
And again in 2017, a district court ruled that Cloudflare is
not protected from anti-piracy injuctions by the Digital Mil-
lennium Copyright Act (DMCA); the RIAA obtained a per-
manent injunction against a site known as MP3Skull, which
contained pirated content, and was distributed by Cloudflare.
The ruling did not specify that Cloudflare was enjoined with
MP3Skull under the DMCA, but rather that Cloudflare was
helping MP3Skull in evading the injunction (under Rule 65 of
the Federal Rules of Civil Procedure) [17].

The role of a CDN as an intermediary has also come into
question in new and currently pending legislation, including a
new German hate speech law and a bill proposed by the U.S.
Senate called Stop Enabling Sex Traffickers Act (SESTA). In
October 2017, Germany passed a new law that imposes large
fines, upwards of five million euros, on social media companies
that do not take down illegal, racist, or slanderous comments
and posts within 24 hours [15]. The law targets companies
such as Facebook, Google, and Twitter, but could also apply
to smaller companies, which could be serviced by CDNs. In
the latter case, it is an open question whether this new law also
applies to CDNs. In the United States, the SESTA bill would
make Internet platforms liable for their user’s illegal comments
and posts [4]. SESTA would hold CDNs liable for the content
that they distribute (despite the CDN not being a party in the
content publishing); these types of laws can naturally lead to
overblocking, where an intermediary errs on the side of caution
and censors more content than it needs to. Such a law may also
set a precedent for the censoring other types of content that are
unpopular but legal.

III. THREAT MODEL AND SECURITY GOALS

In this section, we describe our threat model, outline the ca-
pabilities of the attacker, and introduce the design goals and
protections that OCDN provides.

A. Threat Model

Our threat model is a powerful adversary who has a variety of
capabilities, including both surveilling activities and joining
the system in various capacities. We assume that an adversary
can gain access to the CDNs logs, which typically contains
client IP addresses and URLs for each request. Additionally,
the adversary could join OCDN as either a client or any number
of clients, or as an arbitrary number of exit proxies. The ad-
versary could also act as an origin server (a content publisher).
We also assume that the adversary can coordiante several of

3

these actions to learn more information. For example, the ad-
versary could join as a client and an exit proxy, and request
access to the CDN’s logs to observe how its own requests are
obfuscated. Additionally, the adversary can perform actions,
such as generating requests as a client, or creating content as a
content publisher. The goal of this type of adversary is to learn
about the content being stored at the CDN and/or learn about
which clients are accessing which content.

The strong adversary that we consider has seen some prece-
dent in practice: for example, governments have demanded
access to CDNs’ data [14]. Although one possible adversary is
a government requesting logs from the CDN, the government
could also be colluding with a CDN; the CDN operator might
even be an adversary.

Our design does not defend against an attacker who attempts
to actively disrupt or block access to the system, such as by
actively modifying content, disrupting communications (e.g.,
through denial of service), or blocking access, content, or re-
quests. Prior work on securing CDNs has introduced methods
to handle an actively malicious adversary by preserving the
integrity of content stored on CDN cache nodes [27]. We do
not address an adversary that tampers, modifies, or deletes any
data, content, or requests.

B. Security and Privacy Goals for OCDN

To defend against the adversary described in Section III.A, we
highlight the design goals for OCDN. Each stakeholder—in
this case the content publisher, the CDN, and the client—has
different risks, and therefore should have different protections.
All three stakeholders can be protected by preventing CDNs
from learning information, decoupling content distribution
from trust, and maintaining the performance benefits of a CDN
while reducing the probability of attacks. One strength of
OCDN is that it protects the origin server, the CDN itself, and
the client, whereas existing systems, such as Tor, only protect
the client.
Prevent the CDN from knowing the content it is caching.
First and foremost, the CDN should not have access to the
information outlined in Section II. By limiting the information
that the CDN knows, OCDN limits the amount of information
that an adversary can learn or request. OCDN should hide the
content as well as the URL associated with the content. If the
CDN does not know what content it is caching, then the CDN
will not be able to supply an adversary with the requested data
and it will have a strong argument as to why it cannot be held
liable for its customers’ content.
Prevent the CDN from knowing the identity of users ac-
cessing content. CDNs can currently see clients’ browsing
patterns. OCDN should provide privacy protections by hiding
which client is accessing which content at the CDN. In addi-
tion, it should hide cross-site browsing patterns, which a CDN
is unique in having access to. Some CDNs block legitimate
Tor users because they are trying to protect cached content
from attacks, such as comment spam, vulnerability scanning,
ad click fraud, content scraping, and login scanning [11]; for
example, Akamai blocks Tor users [25]. As a positive side
effect, OCDN prevents privacy-conscious Tor users from being
blocked by CDNs. Finally, some CDNs, due to their ability

Origin Server X

Origin Server Y

Proxies

Client

Exits

CDN X

CDN Y

Figure 2: The relationships between clients, exit proxies, CDNs, and origin
servers in OCDN.

to view cross site browsing patterns, could de-anonymize Tor
users [38], but OCDN would prevent a CDN from compromis-
ing the anonymity of clients.

C. Performance Considerations

As one of the primary functions of a CDN is to make accessing
content faster and more reliable, OCDN should consider per-
formance in design decisions. The performance of OCDN will
be worse than that of traditional CDNs because it is performing
more operations on content, but OCDN is offering confiden-
tiality, whereas traditional CDNs are not. OCDN should scale
linearly in terms of load and storage requirements on exit prox-
ies; additionally, it should be able to scale with the number of
clients using the system, as well as with the growing number
of web pages on the internet.

IV. DESIGN

OCDN that provides oblivious content distribution and com-
prises the following components: clients, exit proxies, CDNs,
and origin servers. Clients are the Internet users who use the
system to access content stored on CDN cache nodes; exit
proxies are proxies that obfuscate the requests and responses
retrieved from the CDNs; and the origin servers are the content
publishers who are customers of the CDNs. Figure 2 shows
how these components interact in the system. This section
describes the decisions made in the design of OCDN, and what
functionality each decision provides. We separate design deci-
sions into two parts: 1) setup decisions and 2) request/response

decisions. We also highlight some additional options that
the design of OCDN allows.

A. OCDN Setup

We start by discussing how the system components communi-
cate and authenticate one another; Table 1 summarizes these
decisions. We introduce shared keys between origin servers
and exit proxies, how these keys are stored, how the exit prox-
ies authenticate themselves to origin servers, and how these
keys are distributed.
Shared Keys. To prevent an adversary from learning infor-
mation, the CDN must not know anything about the content
that it is caching. Therefore, the content and the associated
URL must be obfuscated before the CDN sees them. The
content can be obfuscated by encrypting it with a key that is

4

Design Decision Function
Shared Keys Hides content on cache nodes from CDN.
Consistent Hashing Load balance requests across proxies; ensure

no proxy can control a given URL.
Self-Certifying Identifiers Authenticates exit proxies to origin servers.
DNS for Key Sharing Allows origin server to share shared keys with

exit proxies.

Table 1: Design decisions associated with OCDN setup.

not known to the CDN. Because this must be done prior to
any caching, the content publisher must generate a shared key
k to encrypt the content with. Encrypting the content alone
does not hide much from the CDN; the content identifier, or
URL, must also be obfuscated, otherwise the CDN can still
reveal information about which clients accessed which URLs
(which is indicative of the content). In obfuscating the URL,
the result should be fixed and relatively small; these require-
ments reduce storage requirements and prevent the adversary
from guessing the URL based on the length of the obfuscated
URL. Unfortunately, using a simple hash allows an attacker to
guess the content identifier by hashing guesses and comparing
with the hashes stored in the CDNs caches. Therefore, the
content publisher incorporates the use of the shared key k into
the hash of the URL by using a hash-based message authen-
tication code (HMAC). Additionally, if the domain supports
HTTPS requests, then the content publisher must also encrypt
the associated certificate with the same key k.

The encrypted content and corresponding HMAC are sent
to the CDN1 and stored in its caches. The content publisher
then shares the key k with an exit proxy. This key allows the
exit proxy to request encrypted content on behalf of clients by
computing the HMAC on the URL.
Consistent Hashing. Each exit proxy stores a mapping of
URLs to their associated shared key k; for example, if an
origin server has shared key k and publishes a web page
www.foo.com, then an exit proxy will store the mapping
of www.foo.com to k. This results in the set of exit proxies
forming a distributed hash table where the key is the URL
(www.foo.com) and the value is the shared key (k). To as-
sign (key,value) pairs to exit proxies, OCDN uses consistent
hashing [24, 28]. Consistent hashing uses a hash function H(.)
to generate identifiers for both exit proxies and for URLs;
the identifiers are H(exit ID) and H(URL). We discuss what
exit ID is in the next section on Self-Certifying Identifiers. Af-
ter the hashes are computed, then they are mapped to a point on
an identifier circle (modulo 2m, where m is the length of iden-
tifier in bits); each URL (H(URL)) on the circle is assigned
to the first exit proxy (H(exit ID)) that is equal to or follows
H(URL) on the circle. This hashing method is used in OCDN
because it provides: 1) an evenly distributed mapping of URLs
to shared keys among the exit proxies, 2) a way to prevent an
exit proxy from choosing which URL it wishes to be responsi-
ble for, and 3) a relatively small amount of (key,values) to be
moved when a new exit proxy is established (or removed).
Self-Certifying Identifiers. As mentioned in the previous
paragraph, consistent hashing makes use of identifiers for both

1Most CDNs allow the publisher to decide on a push or pull model, but tje
OCDN is compatible with either approach.

Design Decision Function
Spoofed Source Routes Hides origin of client request from other

clients, exit proxies, and CDN.
Session Keys Hides URL and response from other clients.
Multicast Response Allows CDN to return content directly to

client without knowing the client that re-
quested the content.

Table 2: The design decisions associated with content requests and responses,
and what these decisions provide.

the URLs and the exit proxies. While the identifiers for URLs
are straightforward (H(URL)), the identifiers for exit proxies
must provide more information; an exit proxy identifier must
be able to prove to an origin server that it is the exit proxy
that is responsible for the associated URL. If this validation
was not part of OCDN, then any (potentially malicious) exit
proxy could request the shared key k from any or all origin
servers. To prevent a malicious exit proxy from learning any
shared key k, it must be identified by a self-certifying identifer.
This technique was first introduced in a self-certifying file
system [30]; it allows for other entities (such as origin servers)
to certify the exit proxy solely based on its identifier. The
format of this identifier (exit ID) is IP:hostID, where IP
is the exit proxy’s IP address and hostID is a hash of the
exit proxy’s public key. When an exit proxy is requesting the
shared key k from an origin server, it sends its identifier and its
public key to the origin server. The origin server can then hash
the exit proxy’s public key and verify it against the hostID;
this action serves as a proof of the exit proxy’s position in the
consistent hashing circle, and thus prevents a proxy from lying
about where it lies on the ring (and subsequently lying about
which URL’s shared key it is responsible for).
DNS for Key Sharing. We have discussed how shared keys
are generated, used, and stored, and here we describe how they
are shared. As previously stated, the origin servers generate
shared keys and must share them with the (correct) exit proxies.
OCDN uses DNS to do so. To retrieve a shared key k, an exit
proxy sends a DNS query to the origin server’s authoritative
DNS, and it includes its identifier, exit ID, and its public key
in the Additional Info section of the query. The author-
itative DNS for the origin server validates the exit proxy by
hashing the public key and comparing it to the second part of
exit ID, and verifying that the exit proxy is responsible for its
URL based on the consistent hashing circle. If the verification
is successful, then the authoritative DNS sends the shared key
k encrypted under the exit proxy’s public key, {k}PKexit in the
SRV record of the DNS response. The exit proxy extracts k by
decrypting with its private key, and stores it in its hash table.

B. Requests & Responses

We make additional design choices that concern the requests
that clients initiate and the responses they receive. Table 2 high-
lights these decisions; we introduce session keys, how requests
are routed from clients to exit proxies, and how responses are
routed from exit proxies back to the original client.
Potentially Spoofed Source Routes. As previosuly described,
exit proxies query the CDN on behalf of clients, but the exit
proxy should not be able to learn which client sent which
request. This obfuscation is accomplished by routing requests

5

through a series of other clients. In OCDN, each client is
running a proxy and is also a peer in this system; this peer-to-
peer system of clients borrows the protocols used for clients
joining, leaving, and learning about other clients from the vast
literature on peer-to-peer systems. A client routes a request
through her peers by using source routing; when the client
generates a request, it also generates a source route, which
includes the addresses of a set of her peers. The last hop in
the source route is the exit proxy that is responsible for the
shared key k associated with the URL in her request. The client
determines the correct exit proxy by looking this up in a local
mapping (which is retrieved from a central system that keeps
the mapping of URLs to exit proxies). It appends this source
route to its request and forwards it to the next peer in the route.
When a peer receives a request, she simply forwards it on to
the next peer; this continues until the last hop in the source
route, which is an exit proxy.

Although it might initially appear as if it is easy to identify
the client that initiatived a request as the first hop in the source
route, OCDN allows each client to spoof source routes; specif-
ically, a client can prepend other peers in the route before it
initiates a request. For example, a client with identity C could
generate a route to exit proxy E that looks like C→G→F→E
and can further obfuscate the source of the route by prepend-
ing additional clients to the beginning of the route as follows:
D→ A→C→ G→ F → E.
Neither G, F, nor E know who the original requestor was; from
E’s point of view, the original requestor could have been D, A,
C, G, or F. Using a sequence of peers, or even just knowing
that a client can use a series of peers, hides the identity of the
client from other clients, exit proxies, and the CDN.
Session Keys. In addition to shared keys between origin
servers and exit proxies, OCDN uses session keys shared be-
tween clients and exit proxies. Session keys provide confi-
dentiality of the requested URL and the response. When the
client generates a request, it generates a session key skey. and
encrypts the URL in her request with this key, which provides
{URL}skey. The client must also share this session key with the
exit proxy, so that the exit proxy can learn the plaintext URL
and subsequently compute the HMAC to query the CDN. The
client encrypts the session key with the exit proxy’s public key,
result in {skey}PKexit , and appends this value as an additional
header on the request. Because her request could be forwarded
through a set of client peers, this hides the URL of the request
from other clients.

When an exit proxy receives a request from a client, it
first extracts the session key skey by decrypting it with his
private key, and then he decrypts the URL with the session
key. This operation yields the original plaintext URL. Using
the shared key k from the origin server, it can then compute
HMACk(URL) and forward the request to the CDN. Upon re-
ceiving a response from the CDN, the exit proxy then decrypts
the content with the shared key k, and encrypts the content
with the session key skey before sending it to the client. When
it receives the encrypted response, the client can then decrypt
it using skey.
Multicast Responses. Using session keys allows for a per-
formance optimization in sending responses back to clients.

Instead of sending the encrypted response from the exit proxy
back to the client via the set of peers used in the source route,
the exit proxy can send it in a multicast manner to all clients
that were on the source route. The only client that knows skey
is the true client that originated the request, therefore none of
the other clients can interpret the response, and it reduces the
latency for sending the response to the client.

C. Additional Options

Up to this point, we have discussed how OCDN is designed
in the general case. Here we describe some additional options
that OCDN’s design can include.
Multiple CDNs. While describing the design decisions that
went into OCDN, we referred to a single CDN for simplic-
ity. In reality, OCDN allows for many CDNs to participate;
distributing content across multiple CDNs could provide ad-
ditional privacy. Origin servers can also take advantage of
multiple CDNs.
Encoding URLs. As described earlier, each URL is obfus-
cated by using a HMAC and then stored on the CDN. An ad-
versary could potentially correlate a URL’s popularity with its
access patterns. To prevent this, OCDN allows origin servers
to generate multiple different encodings of its URLs, such
that HMACk(enc1(URL)) 6= HMACk(enc2(URL)). Each origin
server could produce n different encodings of popular URLs,
such that the popularity distribution seen by an adversary is a
uniform distribution of URL requests across all URLs.
DHT Replicas. Each exit proxy’s hash table can be replicated
by another (or many other) exit proxies. This would provide
less load per exit proxy, as well as redundancy in case of fail-
ures. Additionally, the CDN can cache the content associated
with a given URL at more than one cache node; if only one exit
proxy is responsible for a given URL’s content, then it would
likely only be cached at cache node closest to the exit proxy.
Having multiple exit proxies responsible for a URL’s content
helps decrease the load on the proxies while maintaining some
of the performance benefits of a CDN.
Partial Content. Different origin servers have different needs,
and each origin server might have different needs for different
content. The design of OCDN allows origin servers to publish
some of their content on OCDN and some on other CDNs.
This is useful in a case where some content is more sensitive,
while other content needs better performance.
Pre-Fetch DNS Responses. One way to increase the perfor-
mance of OCDN is to pre-fetch DNS responses at the exit
proxies. This would allow the exit proxy to serve each client
request faster because it would not have to send as many DNS
requests. Pre-fetching DNS responses would not take up a
large amount of space, but it also would not be a complete set
of all DNS responses. Additionally, if the content is moved
between cache nodes at the CDN, then DNS response must
also change; therefore, the pre-fetched DNS responses should
have a lifetime that is shorter than the lifetime of the content
on a cache node.
Privacy vs. Performance Tradeoffs. There are two different
modes that OCDN can operate in, where one provides better
performance, and the other provides better privacy. In the first

6

CDN Cache Node Origin Server

HMACk(URL)
{content}k
{certificate}k

Figure 3: How content is published in OCDN. k is shared between the origin
server and the corresponding exit proxy; the CDN has no knowledge of k.

mode, the client can choose to send a request directly to the
exit proxy.

In this case, the exit proxy might be able to discover the
identity of the client, but the CDN would still not be able to
map a request to the client that made the request. Alternatively,
the client can forward a request through a set of peers before
it reaches the exit proxy. In this case, the client can prepend
other clients’ identifiers (as previously described) to make it
appear as though the request came from a different client. This
action further obscures the relationship between the client and
the request. As another option, the client could only prepend
other clients’identifiers but simply forward the request directly
to the exit proxy; this action provides the same performance
benefit as the first mode, but still offers some additional privacy
benefits. Although the last option would appear to strike the
optimal balance between privacy and performance, it cannot be
the only option because the exit proxy would always know that
the true client is the previous hop in the source route. These
modes of operation provide clients with different ways to use
the system both based on their privacy preferences and the type
of content they are requesting.

V. OCDN PROTOCOL

Based on the design decisions discussed in the previous section,
we specify the steps taken to publish and retrieve content in
OCDN.

A. Publishing Content

In order to publish content such that the CDN never sees the
content, the publisher must first obfuscate her content, as de-
scribed in Section IV. Figure 3 shows the steps taken to publish
content.

The most important step in content publishing is obfuscating
the data. We assume that the origin server already has a public
and private key pair, as well as a certificate. To obfuscate the
data the origin server will need to generate a shared key k.

Once the key is established, the origin server must first pad
the content to the same size for some range of original content
sizes (i.e., if content is between length x and y, then pad it to
length z). The range of content sizes should be small, such that
this causes negligible padding overhead, but reduces the prob-
ability of identifying the content based on the content length.
This content padding is done to hide the original content’s
length, as it may be identifiable simply by its length. After
content is padded, then the content is divided into fixed size
blocks and padded to some standard length. Then each block is
encrypted using the shared key k, resulting in a set of encrypted

blocks. Because the CDN does not have access to the shared
key, it cannot see what content it is caching.

Now that the content is obfuscated, the origin server must
also obfuscate the content’s identifier. To do so, she computes
the HMAC of the URL using the shared key k.

Once the identifier and the content are obfuscated with k,
they can be pushed to the CDN, or optionally to multiple CDNs.
Recently, services have cropped up to allow and help facilitate
the use of multiple CDNs for the same content; an origin
server could use multiple CDNs’ services. This mechanism
could be used in OCDN to increase reliability, performance,
and availability; an origin server can use a service, such as
Cedexis [9], to load balance between CDNs. We discuss the
use of multiple CDNs more in Section V.D on OCDN in partial
deployment.

As the exit proxies use consistent hashing to divide keys
among proxies while balancing load, the origin server deter-
mines which exit proxy is correct (based on the consistent
hashing circle). The origin server then encrypts the shared
key k with the correct exit proxy’s public key PKexit . Figure
6 shows the steps for retrieveing a shared key. First, the exit
proxy sends a DNS request to the origin server’s authoritative
DNS server, including its self-certifying identifier and its pub-
lic key (these are both included in the Additional Info
section of the DNS message). The origin server hashes the
exit proxy’s public key and verifies it against its self-certifying
identifier; this acts as a proof of the exit proxy’s position in
the consistent hashing circle. If the origin is able to certify the
exit proxy, then it will send the DNS response with {k}PKproxy
in the SRV record. The exit proxy will receive the encrypted
shared key, which it can decrypt with it’s private key.
Updating Content. For an origin server to update content, she
must follow similar steps as described in publishing content.
Once she has updated the content on her origin server, she must
obfuscate it using the same steps: 1) pad the original content
length, 2) divide the content into fixed size blocks, and 3)
encrypt the content blocks with the shared key k. Because she
is updating the content (as opposed to creating new content),
the obfuscated identifier will remain the same. The origin
server signs the updated obfuscated content with her private
key, such that the CDN can verify it was true origin server that
sent the update.
Updating Keys. An origin server must be able to update keys
in case of compromise. To minimize the amount of time a key
is compromised for, the origin server specifies an expiration
date and time for the key when it is originally generated. The
origin server periodically checks if the key is valid or not
based on the expiration timestamp. If the key is still valid, the
origin server continues to use it. Otherwise, the origin server
generates a new key knew, computes HMACknew(URL), and
encrypts the content (and possibly certificate) with knew. The
content publisher then follows the same steps as in Updating
Content to push the content to the CDN, and it publishes knew
encrypted with the exit proxy’s public key in it’s DNS SRV
record.

The corresponding exit proxy must also be able to fetch this
new key knew and replace the expired key with it. When the
exit proxy sees an incoming request for a URL that uses key

7

k, it first checks k’s timestamp. If valid, then it continues as
normal. Otherwise, it sends a DNS request to the publisher’s
authoritative DNS, and extracts {knew}PKproxy from the DNS re-
sponse. The exit proxy then decrypts it to obtain knew, updates
its version of the key, and proceeds as normal.

B. Retrieving Content

The steps for a client to retrieve a web page that has been
cached by OCDN are shown in Figure 4, where the client
forwards a request directly to an exit proxy; Figure 5 shows the
steps to retrieve content when the client forwards its request
through two peers. We assume the client has already joined the
system, which is described in more detail in Section V.C; at this
stage, the client has knowledge of a subset of its peers (other
OCDN clients) and a mapping of exit proxies and which URLs
they hold keys for. The client generates a request for a specific
URL, and looks up which exit proxy holds the key for that URL
in its local mapping. Next, the client selects a source route; this
source route allows the client to specify which mode of OCDN
they would like to use: 1) no additional source route, which
has better performance, or 2) a source route, which has better
privacy. If the client decides to use the privacy-preserving
mode, then she generates a source route, which includes some
of its peers, and could potentially include a false originator (as
described in Section IV). Before sending the request, the client
generates a session key ksession and encrypts it with the exit
proxy’s public key. The client appends both the source route
and {ksession}PKproxy to the request and encrypts the URL with
ksession such that no other clients on the path can learn what
the requested URL is. The client then sends it onto the next
proxy in the source route, which could be either another client
proxy or the exit proxy. The request is forwarded through all
subsequent hops in the source route until it reaches the exit
proxy. The exit proxy decrypts {ksession}PKproxy with its private
key and stores the source route locally; it then decrypts the
URL with ksession.

The exit proxy then resolves the domain using it’s local
resolver, which will redirect it to the CDN’s DNS resolver. In
order for the exit proxy to generate the obfuscated identifier to
query the cache node for the correct content, it must have the
shared key k that the origin server generated and obfuscated
the content and identifier with. The steps an exit proxy takes
to retrieve the shared key were outlined in Section V.A and are
shown in Figure 6.

Now that the proxy has obtained the shared key k from the
origin server, it can generate the obfuscated content identifier
based on the request the client sent. It computes the HMAC
of the URL with the shared key. The proxy then sends the
(obfuscated) request to the edge server, where the CDN locates
the content associated with the identifier. The CDN returns the
associated obfuscated content, which we recall is the fixed-size
blocks encrypted with the same shared key that the identifier
was obfuscated with. The proxy can decrypt the content blocks
with the shared key from the origin server, assemble the blocks,
and strip any added padding, to reconstruct the original content.

Lastly, the exit proxy must send the response back to the
correct client without knowing who the client is. First, the
exit proxy fetches the session key ksession that it stored for the

Client Exit Proxy CDN

Generate session
key (skey), append
encrypted session
key as header,
encrypt URL

(1)

GET {URL}skey,
{skey}PKexit

(2)
Decrypt {skey}PK-1exit,
decrypt {URL}skey

GET HMACk(URL)

(3)
Retrieve {contentURL}k

{contentURL}k

(4)
Decrypt {contentURL}k,
encrypt {contentURL}skey

{contentURL}skey
(5)

Decrypt
{contentURL}skey

Figure 4: Steps for retrieving content in OCDN when a client is prioritizing
performance and goes directly to an exit proxy.

corresponding incoming request, and it uses this key to encrypt
the response. Then, it looks up the source route it stored for the
corresponding request and uses a multicast technique to send to
the encrypted response to all clients on the source route. At this
point, the exit proxy can delete the source route and session key
entries for this request/response. Only the original (true) client
has ksession, so only the original (true) client can decrypt the
response. All other clients will discard the encrypted response
because they cannot decrypt it.

C. Clients Joining & Leaving

When a client joins OCDN, she will download OCDN client
software. This includes information about exit proxy mappings
to URLs for which they hold a key, software for modifying
requests with session keys and source routes, and software for
running a proxy. Clients will learn about other clients in the
system via a gossip protocol. We do not detail this as gossip
protocols have been studied extensively in the past. Similarly,
when a client leave the system, this information is propogated
to its peers using a gossip protocol.

D. Partial Deployment

OCDN should be partially deployable, in the sense that if only
some origin servers participate or only some CDNs participate,
then the system should still offer some protections. We outline
two different partial deployment possibilities below.
Deployment with Origin Servers’ Full Participation. One
option for deploying OCDN is to ensure there is some set S
of origin servers that participate fully in the system. These
publishers obfuscate their content, identifiers, and certificates,
and most importantly, only have obfuscated data stored on the
CDNs cache nodes. S must be greater than one, otherwise the
CDN can infer that a client accessing this obfuscated content
is actually accessing content that can be identified. This partial
deployment plan protects the privacy of the clients accessing
the content created by the set of origin servers S. It does not
protect the clients’ privacy as completely as full participation

8

GET {URL}skey,
{skey}PK_exit

GET HMACk(URL)

{contentURL}k

{contentURL}skey

Figure 5: Steps for retrieving content in OCDN when a client is prioritizing
privacy and proxies a request through two other clients before reaching the
exit proxy. This figure shows that the request is sent sequentially through peers,
and the response is sent in a multicast manner back to the clients.

of all origin servers in OCDN because the CDN can still view
cross site browsing patterns among the origin servers that are
not participating. It is important to note though, that because
the clients are behind proxies, the CDN cannot individually
identify users. The CDN can attribute requests to exit proxies,
but not to clients.
Deployment with Origin Servers’ Partial Participation.
Some origin servers may prioritize performance and avail-
ability. Therefore, they should have the option to gradually
move towards full participation by pushing both encrypted and
plaintext content to the CDN. In this partial deployment plan,
we see some set of origin servers fully participating with only
encrypted content, some other set of origin servers partially par-
ticipating with both encrypted and plaintext content, and some
last set of publishers that are not participating. Unfortunately,
if a publisher has the same content that is both encrypted and
plaintext content at a cache node, then an adversary can cor-
relate the access patterns on encrypted and plaintext content
for the origin server. In order to prevent this identification
of the content, OCDN can use encoded URLs (described in
Section IV), which obfuscates the access patterns for a given
piece of content; this holds true if an origin server chooses to
distribute its content in an encrypted manner using OCDN and
in plaintext form on a different CDN. In this case, the origin
server can still encode its URLs in multiple ways to prevent
correlating access patterns between the encrypted and plaintext
content. Therefore, this deployment option allows for differing
levels of participation in the system, while still preserving the
protections provided by OCDN.

VI. IMPLEMENTATION

We have implemented a prototype of OCDN to demonstrate its
feasibility and evaluate its performance. Our implementation
allows a client to send a request for content through an exit
proxy, which will fetch the corresponding encrypted content.
Figure 7 shows our prototype; the solid line represents how
OCDN communicates between the components, and the dotted
line represents how a traditional CDN would communicate in
our prototype. Here we will discuss each component—client
proxy, exit proxy, and CDN—separately, and how they fit
together.

Exit Proxy

Authoritative DNS

Origin Server

Publisher publishes {k}PK_exit in
DNS SRV record

 (1) DNS lookup, sending
self-certifying ID

(3) SRV {k}PK_exit

(2) Certifies exit proxy is
responsible for this
server's content

Figure 6: How an origin server certifies an exit proxy and distributes its
shared key to an exit proxy. In step (1), the exit proxy sends his self-certifying
ID in the Additional section of the DNS message.

VPS in Chicago
(CDN)

VPS in Chicago
(Exit Proxy)

New York City
(Client)

Go Proxy Go Proxy lighttpd/1.4.33
Web Server

59.1 Mbits/sec
28.1 ms

3.0 Gbits/sec
.181 ms

67.6 Mbits/sec
29.4ms

Figure 7: The implementation of our OCDN prototype. The solid line rep-
resents how OCDN communicates between the components; the dotted line
represents how a traditional CDN would communicate. α represents the la-
tency between the client and the exit proxy; we simulate additional clients on
this path by increasing α .

CDN. As the design for OCDN requires encrypted content and
identifiers to be stored in the CDN, we cannot request content
from real-world CDNs. Additionally, we must evaluate the
performance of OCDN in comparison to the same content,
cache locations, etc., so we set up a data storage server. This
server is run on a Virtual Private Server (VPS) located in
Chicago, USA. To access content, we set up a web server on
this VPS machine. To generate plaintext web content, we used
Surge [5], which allows us to generate a set of files that are
representative of real-world web server file distributions. In
OCDN, the files are encrypted with a shared key k and the
obfuscated file name is the HMACk(file name). We use AES
with 256-bit keys for the shared key and SHA-256 for the
hash function. Both the plaintext files and encrypted files are
stored on this web server, and for the purposes of evaluating
our prototype, act as a CDN in OCDN.
Exit Proxy. The exit proxy is the component that queries the
CDN for encrypted content on behalf of a client. We have
implemented a web proxy in Go; this proxy runs on a different
VPS machine in Chicago, USA. In addition to proxying web
requests, the exit proxy also provides cryptographic function-
ality. When receiving a request, it rewrites the URL in the
request to be the HMACk(URL), and it parses the headers to
retrieve a specific header, X-OCDN, which contains the client’s
session key encrypted under the exit proxy’s public key. Our

9

Preserves Preserves Protects
Integrity Confidentiality Client
at CDN at CDN Identity

Stickler [27]
R & C [31]
Tor [16]
OCDN

Table 3: The security and privacy features offered by related systems. To our
knowledge, OCDN is the first to address confidentiality at the CDN.

implementation uses 2048-bit RSA for asymmetric encryption.
After decrypting the session key, it stores it in memory for use
on the response. When it receives a response from the CDN, it
decrypts the content with the shared key k, and subsequently
encrypts it with the session key (both using AES 256-bit en-
cryption). The exit then forwards the response onto the client
proxy.
Client Proxy. The client proxy acts on behalf of the client that
is requesting content. This proxy uses the same implementation
as the exit proxy, but provides different cryptographic functions
on the requests and responses. When a client makes a request,
the client proxy generates a session key (AES 256-bit) and
looks up the correct exit proxy’s public key. The client proxy
then adds a header to the request, where X-OCDN is the key,
the encrypted session key is the value. The client then forwards
this on to the exit proxy. When the client receives a response
from the exit proxy, it must decrypt the content with the session
key it originally generated.

VII. SECURITY ANALYSIS

We analyze and discuss how OCDN addresses different at-
tacks. Table 3 shows what security and privacy features OCDN
provides in comparison to other related systems.
Popularity Attacks. An attacker that has requested or other-
wise gained access to CDN cache logs can learn information
about how often content was requested. Because not all content
is requested uniformly, the attacker could potentially correlate
the most commonly requested content with very popular web-
pages. While this does not allow the CDN to learn which
clients are accessing the content, it can reveal information
about what content is stored on the CDN cache nodes. OCDN
handles this type of attacker by making the distribution of
content requests appear uniform. The content publisher (of
popular content) generates multiple encodings of their content
and URLs, and encrypts each one with the shared key k, such
that they have multiple, different-looking copies of their con-
tent. All of the content copies are pushed to the CDN and the
key is shared with the exit proxy.2 Now, the popular content
does not appear as popular, and it makes it difficult for an
attacker to infer the popularity of the content.
Chosen Plaintext Attacks. An attacker could attempt to deter-
mine whether a particular URL was being accessed by sending
requests through specific OCDN proxies and requesting access
to the CDN cache logs, which contain the corresponding ob-

2This also provides load balancing for exit proxies that hold the shared
key k for the popular webpage because it distributes the load across multiple
exit proxies (where each of these exit proxies are responsible for one of the
encodings).

fuscated requests and responses. Blinding the clients’ requests
with a random nonce that is added by the proxy should prevent
against this attack. We also believe that such an attack reflects
a stronger attack: from a law enforcement perspective, receiv-
ing a subpoena for existing logs and data may present a lower
legal barrier than compelling a CDN to attack a system.
Spoofed Content Updates. Because the CDN cache nodes do
not know either the content that they are hosting or the URLs
corresponding to the content, an attacker could masquerade as
an origin server and could potentially push bogus content for a
URL to a cache node. There are a number of defenses against
this possible attack. This simplest solution is for CDN cache
nodes to authenticate origin servers and only accept updates
from trusted origins; this approach is plausible, since many
origin servers already have a corresponding public key certifi-
cate through the web PKI hierarchy. An additional defense
is to make it difficult for to discover which obfuscated URLs
correspond to which content that an attacker wishes to spoof;
this is achievable by design. A third defense would be to only
accept updates for content from the same origin server that
populated the cache with the original content.
Flashcrowds. A flashcrowd is large spike in traffic to a specific
web page. An attacker could see that some content on the
CDN has just seen a surge in traffic and correlate that with
other information (for example, major world events). This
leaks information about what content the CDN is caching.
Fortunately, the design of OCDN can defend against this type
of inference attack. The exit proxy can cache content in the
time of a flashcrowd, such that the CDN (and therefore the
attacker) does not see the surge in traffic.3

VIII. PERFORMANCE ANALYSIS

To evaluate how much overhead is caused by OCDN we mea-
sure the performance of OCDN. In addition to understanding
the latency and overhead produced by the system, we also dis-
cuss the scalability of the design and show how OCDN scales
well with an increasing number of clients.

A. OCDN Overhead

For measuring performance characteristics of OCDN, we use
the implementation described in Section VI. Figure 7 shows
how our measurements reflect OCDN (solid line) and a tradi-
tional CDN (dotted line).

Figure 8 shows the Time to First Byte (TTFB) for both
OCDN and without OCDN. We can see the the TTFB using
OCDN grows linearly with file size, whereas without OCDN
TTFB remains fairly constant. Interestingly, we can see that
there are some fixed time operations that OCDN performs,
which is visible by looking at the smaller file sizes.

In addition to measuring TTFB, we measured the time it
took to complete a request (with and without OCDN); the re-
sults are shown in Figure 9. Again, completion time grows
linearly with file size, but for both OCDN and without OCDN;
while both follow the same pattern, the time to complete re-
quests is, as expected, longer using OCDN as it performs many

3This raises billing issues because the CDN cant charge as much if edge
servers dont see as many requests for the origin; fortunately, RFC 2227 de-
scribes a solution for this [34].

10

102 103 104 105 106 107

File Size (bytes)

0

100

101
TT

FB
 (s

)
OCDN
No OCDN

Figure 8: Time to First Byte measurements with and without OCDN.

102 103 104 105 106 107

File Size (bytes)

0

100

101

Co
m

pl
et

io
n

(s
)

OCDN
No OCDN

Figure 9: Time to complete a request with and without OCDN.

cryptographic operations and proxies traffic between the client
and the CDN.

As described in Section VI, our prototype included only a
single client, but our design allows for a client to proxy her
request through additional clients. To simulate this, we add
latency between the client and the exit proxy, and measure
both the TTFB and time to complete a request when there are
different values of latency, which represent different numbers
of clients on the path between the original client and the exit
proxy. Figure 10 shows the results for three different file
sizes. The bottom portion of each bar in the graph shows the
TTFB, and the top portion shows the additional time needed
to complete the request. As expected, the TTFB grows much
slower as file size and latency increase; completion time grows
more quickly than TTFB as the file size and latency increase.

Finally, we measure the performance overhead of the individ-
ual operations used in OCDN; figure 11 shows the overhead of
different components of the system for three different file sizes.
We can see that some of the fixed cost/time operations include
the client locally looking up the correct exit proxy to use for a
given URL and the exit proxy generating the HMACk(URL).
The operations that have the most overhead and continue to
grow with the size of the file are the exit proxy decrypting the
response with the shared key k, the exit proxy encrypting the

0.5 15.5 30.5
File Size (MB)

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)

Latency (ms)
0
100
300
500
700
900

TTFB
No OCDN
TTFB
No OCDN

Figure 10: Time to First Byte and time to complete a request with varying the
file size and latency; this latency correspondes to α in Figure 7.

0.5 15.5 30.5
File Size (MB)

0
100

101

102

103

104

105

106
Ti

m
e

(
s)

Client genSessionKey
Client addOCDNHeader
Client getExitProxy
Proxy getOriginKey

Proxy genMAC + Mangle URL
Proxy Decrypt Response
Proxy Encrypt Response
Client Decrypt

Figure 11: Overhead of different operations performed by OCDN.

response with the session key ksession, and the client decrypting
the response with the session key ksession.

B. Scalability

For evaluating performance, we are also concerned with how
well OCDN will scale with more users and more URLs. In
particular, we need to reason about how much load is put on
the exit proxies as the system grows; clients do not bare much
load in the system as they simply proxy requests and the CDN
is designed to handle high numbers of requests, therefore, we
limit our scalability analysis to the exit proxies.

As previously mentioned, we balance load among the prox-
ies by using consistent hashing to assign URLs to exit proxies.
OCDN can additionally distribute load by replicating exit prox-
ies, meaning that two exit proxies can have the same distributed
hash table of shared keys. This way, both exit proxies can ac-
cept requests from clients for the URLs they are responsible
for. Also worth noting is that the exit proxy is only recieving

11

requests for the content corresponding to the shared keys it
contains. Therefore, as the number of clients grow, the exit
proxy is still only responsible for its set of shared keys and
subsequent URLs. And as the number of URLs increase, the
additional load per proxy is still low because of the load bal-
ancing properties of consistent hashing. We also discuss in
Section IX how clients can set up exit proxies; this will further
decrease the load per exit proxy because each exit proxy will
be responsible for a smaller number of shared keys/URLs.

IX. DISCUSSION

In this section, we discuss the various technical, political, and
legal limitations of OCDN, as well as possible avenues for
future work.
OCDN limitations. CDNs become slightly limited in terms
of the possible performance optimizations when following
OCDN’s design. For example, many CDNs perform HTTPS
re-writes on content that they cache, but this can only be done
if the CDN has access to the decrypted content. Similarly, the
CDN needs the decrypted content to perform minimizations on
HTML, CSS, and Javascript files. While this likely increases
performance in traditional CDNs, it does not provide the great-
est increase in performance; content caching around the world
is the greatest benefit to performance, which OCDN preserves.
CDNs operated by content hosts. The design of OCDN as-
sumes that the entities operating the proxies and delivering
content are distinct from original content provider. In many
cases, however—particularly for large content providers such
as Netflix, Facebook, and Google—the content provider op-
erates their own CDN cache nodes; in these cases, OCDN
will not be able to obfuscate the content from the CDN oper-
ator, since the content host and the CDN are the same party.
Similarly, because the CDN operator is the same entity as the
original server, it also knows the keys that are shared with the
clients. As a result, the CDN cache nodes could also discover
the keys and identify both the content, as well as which clients
are requesting which content.
Exit proxies run by volunteers. In the description of OCDN
in Sections IV and V, we assume we are running the exit prox-
ies, but the design of the system also allows for clients to run
exit proxies. Exit proxies are not trusted with client identi-
ties and information, which allows for volunteers to run exit
proxies. The addition of an exit proxy follows the protocol
in consistent hashing for when a new node joins; some keys
would be transferred to the new exit proxy, and clients’ map-
ping of exit proxies will be updated. This allows for the load
to be split among more proxies and increases the geographic
diversity of the exit proxies.
Legal questions and political pushback. Recent cases sur-
rounding the Stored Communications Act in the United States
raise some questions over whether a system like OCDN might
face legal challenges from law enforcement agencies. To pro-
tect user data against these types of challenges, Microsoft has
already taken steps such as moving user data to data centers in
Germany that are operated by entities outside the United States,
such as T-Systems. It remains to be seen, of course, whether
OCDN would face similar hurdles, but similar systems in the
past have faced scrutiny and pushback from law enforcement.

X. RELATED WORK

To our knowledge, there has been no prior work on preventing
surveillance at CDNs, but there has been relevant research on
securing CDNs, finding security vulnerabilities in CDNs, and
conducting different types of measurements on CDNs.
Securing CDNs. Most prior work on securing CDNs has
focused on providing content integrity at the CDN as op-
posed to content confidentiality (and unlinkability). In 2005,
Lesniewski-Laas and Kaashoek use SSL-splitting — a tech-
nique where the proxy simulates an SSL connection with the
client by using authentication records from the server with
data records from the cache (in the proxy) — to maintain the
integrity of content being served by a proxy [26]. While this
work does not explicitly apply SSL-splitting to CDNs, it is a
technique that could be used for content distribution. Micha-
lakis et al., present a system for ensuring content integrity for
untrusted peer-to-peer content delivery networks [31]. This
system, Repeat and Compare, use attestation records and a
number of peers act as verifiers. More recently, Levy et al.,
introduced Stickler, which is a system that allows content pub-
lishers to guarantee the end-to-end authenticity of their content
to users [27]. Stickler includes content publishers signing their
content, and users verifying the signature without having to
modify the browser. Unfortunately, systems like Stickler do not
protect against an adversary that wishes to learn information
about content, clients, or publishers; OCDN is complementary
to Stickler.

There has been prior work in securing CDNs against
DDoS attacks; Gilad et al. introduce a DDoS defense
called CDN-on-Demand [19]. In this work they provide a
complement to CDNs, as some smaller organizations cannot
afford the use of CDNs and therefore do not receive the DDoS
protections provided by them. CDN-on-Demand is a software
defense that relies on managing flexible cloud resources as
opposed to using a CDN provider’s service.

Security Issues in CDNs. More prevalent in the literature than
defense are attacks on CDNs. Recent work has studied how
HTTPS and CDNs work together (as both have been studied
extensively separately). Liang et al., studied 20 CDN providers
and found that there are many problems with HTTPS prac-
tice in CDNs [29]. Some of these problems include: invalid
certificates, private key sharing, neglected revocation of stale
certificates, and insecure back-end communications; the au-
thors point out that some of these problems are fundamental
issues due to the man-in-the-middle characteristic of CDNs.
Similarly, Zolfaghari and Houmansadr found problems with
HTTPS usage by CDNBrowsing, a system that relies on CDNs
for censorship circumvention [42]. They found that HTTPS
leaks the identity of the content being accessed, which defeats
the purpose of a censorship circumvention tool.

Research has also covered other attacks on CDNs, such as
flash crowds and denial of service attacks; Jung et al., show that
some CDNs might not actually provide much defense against
flash events (and they differentiate flash events from denial
of service events) [23]. Su and Kuzmanovic show that some
CDNs are more susceptible to intential service degradation,
despite being known for being resilient to network outages

12

and denial of service attacks [36]. Additionally, researchers
implemented an attack that can affect popular CDNs, such as
Akamai and Limelight; this attack defeats CDNs’ denial of
service protection and actually utilizes the CDN to amplify the
attack [37]. In the past year, researchers have found forwarding
loop attacks that are possible in CDNs, which cause requests to
be served repeatedly, which subsequently consumes resources,
decreases availability, and could potentially lead to a denial of
service attack [10].

Recently, researchers have studied the privacy implications
of peer-assisted CDNs; peer-assisted CDNs allow clients
to cache and distribute content on behalf of a website. It is
starting to be supported by CDNs, such as Akamai, but the
design of the paradigm makes clients susceptible to privacy
attacks; one client can infur the cross site browsing patterns of
another client [22].

Measuring and Mapping CDNs. As CDNs have increased
in popularity, and are predicted to grow even more [41], much
research has studied the deployment of CDNs. Huang et al.,
have mapped the locations of servers, and evaluated the server
availability for two CDNs: Akamai and Limelight [21]. More
recently, Calder et al., mapped Google’s infrastructure; this
included developing techniques for mapping, enumerating the
IP addresses of servers, and identifying associations between
clients and clusters of servers [8]. Scott et al., develop a cluster-
ing technique to identify the IP footprints of CDN deployments;
this analysis also analyzes network-level interference to aid
in the identification of CDN deployments [33]. In 2017, re-
searchers conducted an empirical study of CDN deployment in
China; they found that it is significantly different than in other
parts of the world due to their unique economic, technical, and
regulatory factors [40].

Other measurement studies on CDNs have focused on char-
acterizing and quantifying flash crowds on CDNs [39], infer-
ring and using network measurements performed by a large
CDN to identify quality Internet paths [35], and measuring
object size distributions and request characteristics to optimize
caching policies [6].

XI. CONCLUSION

As more content is distributed via CDNs, CDNs are increas-
ingly becoming the targets of data requests and liability cases.
We discuss why CDNs are powerful in terms of the information
they know and can gather, such as a client’s cross site browsing
patterns. In response to traditional CDNs’ capabilities, we
design OCDN, which provides oblivious content distribution.
OCDN obfuscates data such that the CDN can operate without
having knowledge of what content they are caching. This sys-
tem not only provides protections to CDNs, but also preserves
client privacy by ensuring that the CDN and the origin server
never learn the identity of clients that make requests for content.
OCDN is robust against a strong adversary who has access
to request logs at the CDN and can also join the system as a
client, publisher, or CDN. Our evaluation shows that OCDN
imposes some performance overhead due to the cryptographic
operations that allow it to obliviously cache content, but that
this overhead is acceptable, particularly for the sizes of files
that make up common web workloads.

REFERENCES

[1] Court Says RIAA Can Just Tell Cloudflare Any Site Is A Groove-
shark Clone... And Cloudflare Has 48 Hours To Dump Them.
https://www.techdirt.com/articles/20151214/
17392833079/court-says-riaa-can-just-
tell-cloudflare-any-site-is-grooveshark-
clone-cloudflare-has-48-hours-to-dump-
them.shtml.

[2] Akamai Empowers Operators to Deploy Their Own Content
Distribution Network. https://www.akamai.com/
us/en/resources/content-distribution-
network.jsp.

[3] Akamai: Facts & Figures. https://www.akamai.com/
us/en/about/facts-figures.jsp.

[4] Balancing Child Protection and Digital Rights.
https://medium.com/@jmalcolm/balancing-
child-protection-and-digital-rights-
1b9c4ab0b93f.

[5] P. Barford and M. Crovella. Generating representative web work-
loads for network and server performance evaluation. In ACM
SIGMETRICS Performance Evaluation Review, volume 26,
pages 151–160. ACM, 1998.

[6] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. Adapt-
size: Orchestrating the hot object memory cache in a content
delivery network. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 483–498.
USENIX Association, 2017.

[7] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from
a distance: Website fingerprinting attacks and defenses. In
Proceedings of the 2012 ACM conference on Computer and
communications security, pages 605–616. ACM, 2012.

[8] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and
R. Govindan. Mapping the expansion of Google’s serving in-
frastructure. In Proceedings of the 2013 conference on Internet
measurement conference, pages 313–326. ACM, 2013.

[9] Cedexis. https://www.cedexis.com/.

[10] J. Chen, J. Jiang, X. Zheng, H. Duan, J. Liang, K. Li, T. Wan,
and V. Paxson. Forwarding-loop attacks in content delivery
networks. In Proceedings of the 23st Annual Network and
Distributed System Security Symposium (NDSS’16), 2016.

[11] Cloudflare: 94 Percent of the Tor Traffic We See is “Per Se Ma-
licious”. https://arstechnica.com/tech-policy/
2016/03/new-data-suggests-94-percent-of-
tor-traffic-is-malicious/.

[12] Content Delivery Networks Arent Notorious Markets. https:
//medium.com/niskanen-center/content-
delivery-networks-arent-notorious-
markets-2a448a549cf7.

[13] Content Delivery Networks (CDNs). https:
//www.eff.org/free-speech-weak-link/cdn.

[14] CREDO and Cloudflare Argue Against National Security
Letter Gag Orders. https://techcrunch.com/2017/
03/23/credo-and-cloudflare-argue-against-
national-security-letter-gag-orders/.

[15] Delete Hate Speech or Pay Up, Germany Tells Social Me-
dia Companies. https://www.nytimes.com/2017/
06/30/business/germany-facebook-google-
twitter.html.

13

https://www.techdirt.com/articles/20151214/17392833079/court-says-riaa-can-just-tell-cloudflare-any-site-is-grooveshark-clone-cloudflare-has-48-hours-to-dump-them.shtml
https://www.techdirt.com/articles/20151214/17392833079/court-says-riaa-can-just-tell-cloudflare-any-site-is-grooveshark-clone-cloudflare-has-48-hours-to-dump-them.shtml
https://www.techdirt.com/articles/20151214/17392833079/court-says-riaa-can-just-tell-cloudflare-any-site-is-grooveshark-clone-cloudflare-has-48-hours-to-dump-them.shtml
https://www.techdirt.com/articles/20151214/17392833079/court-says-riaa-can-just-tell-cloudflare-any-site-is-grooveshark-clone-cloudflare-has-48-hours-to-dump-them.shtml
https://www.techdirt.com/articles/20151214/17392833079/court-says-riaa-can-just-tell-cloudflare-any-site-is-grooveshark-clone-cloudflare-has-48-hours-to-dump-them.shtml
https://www.akamai.com/us/en/resources/content-distribution-network.jsp
https://www.akamai.com/us/en/resources/content-distribution-network.jsp
https://www.akamai.com/us/en/resources/content-distribution-network.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp
https://medium.com/@jmalcolm/balancing-child-protection-and-digital-rights-1b9c4ab0b93f
https://medium.com/@jmalcolm/balancing-child-protection-and-digital-rights-1b9c4ab0b93f
https://medium.com/@jmalcolm/balancing-child-protection-and-digital-rights-1b9c4ab0b93f
https://www.cedexis.com/
https://arstechnica.com/tech-policy/2016/03/new-data-suggests-94-percent-of-tor-traffic-is-malicious/
https://arstechnica.com/tech-policy/2016/03/new-data-suggests-94-percent-of-tor-traffic-is-malicious/
https://arstechnica.com/tech-policy/2016/03/new-data-suggests-94-percent-of-tor-traffic-is-malicious/
https://medium.com/niskanen-center/content-delivery-networks-arent-notorious-markets-2a448a549cf7
https://medium.com/niskanen-center/content-delivery-networks-arent-notorious-markets-2a448a549cf7
https://medium.com/niskanen-center/content-delivery-networks-arent-notorious-markets-2a448a549cf7
https://medium.com/niskanen-center/content-delivery-networks-arent-notorious-markets-2a448a549cf7
https://www.eff.org/free-speech-weak-link/cdn
https://www.eff.org/free-speech-weak-link/cdn
https://techcrunch.com/2017/03/23/credo-and-cloudflare-argue-against-national-security-letter-gag-orders/
https://techcrunch.com/2017/03/23/credo-and-cloudflare-argue-against-national-security-letter-gag-orders/
https://techcrunch.com/2017/03/23/credo-and-cloudflare-argue-against-national-security-letter-gag-orders/
https://www.nytimes.com/2017/06/30/business/germany-facebook-google-twitter.html
https://www.nytimes.com/2017/06/30/business/germany-facebook-google-twitter.html
https://www.nytimes.com/2017/06/30/business/germany-facebook-google-twitter.html

[16] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. Technical report, Naval Re-
search Lab Washington DC, 2004.

[17] District court rules against Cloudflare in anti-piracy suit.
https://thestack.com/security/2017/03/29/
district-court-rules-against-cloudflare-
in-anti-piracy-suit/.

[18] EU Proposal for a Directive of The European Parliament and of
the Council on Copyright in the Digital Single Market. 2016.
https://ec.europa.eu/transparency/regdoc/
rep/1/2016/EN/1-2016-593-EN-F1-1.PDF.

[19] Y. Gilad, A. Herzberg, M. Sudkovitch, and M. Goberman. CDN-
on-demand: an affordable DDoS defense via untrusted clouds.
In Network and Distributed Security Symposium (NDSS), 2016.

[20] How the NSA & FBI made Facebook the perfect mass
surveillance tool. https://venturebeat.com/2014/
05/15/how-the-nsa-fbi-made-facebook-the-
perfect-mass-surveillance-tool/.

[21] C. Huang, A. Wang, J. Li, and K. W. Ross. Measuring and
evaluating large-scale cdns. In ACM IMC, volume 8, 2008.

[22] Y. Jia, G. Bai, P. Saxena, and Z. Liang. Anonymity in peer-
assisted CDNs: Inference attacks and mitigation. Proceedings
on Privacy Enhancing Technologies, 2016(4):294–314, 2016.

[23] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds
and denial of service attacks: Characterization and implications
for CDNs and web sites. In Proceedings of the 11th international
conference on World Wide Web, pages 293–304. ACM, 2002.

[24] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web.
In Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, pages 654–663. ACM, 1997.

[25] S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan, V. Pax-
son, S. J. Murdoch, and D. McCoy. Do you see what i see?
differential treatment of anonymous users. In Network and
Distributed System Security Symposium, 2016.

[26] C. Lesniewski-Laas and M. F. Kaashoek. SSL splitting: Se-
curely serving data from untrusted caches. Computer Networks,
48(5):763–779, 2005.

[27] A. Levy, H. Corrigan-Gibbs, and D. Boneh. Stickler: Defend-
ing against malicious CDNs in an unmodified browser. arXiv
preprint arXiv:1506.04110, 2015.

[28] D. M. Lewin. Consistent hashing and random trees: Algorithms
for caching in distributed networks. PhD thesis, Massachusetts
Institute of Technology, 1998.

[29] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu. When
HTTPS meets CDN: A case of authentication in delegated ser-
vice. In Security and Privacy (S&P), 2014 IEEE Symposium on,
pages 67–82. IEEE, 2014.

[30] D. D. F. Mazières. Self-certifying file system. PhD thesis, Mas-
sachusetts Institute of Technology, 2000.

[31] N. Michalakis, R. Soulé, and R. Grimm. Ensuring content in-
tegrity for untrusted peer-to-peer content distribution networks.
In Proceedings of the 4th USENIX Conference on Networked
Systems Design & Implementation, pages 11–11. USENIX As-
sociation, 2007.

[32] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp,
K. Wehrle, and T. Engel. Website fingerprinting at internet scale.
In Network & Distributed System Security Symposium (NDSS).
IEEE Computer Society, 2016.

[33] W. Scott, T. Anderson, T. Kohno, and A. Krishnamurthy. Satel-
lite: Joint analysis of CDNs and network-level interference. In
2016 USENIX Annual Technical Conference (USENIX ATC 16),
pages 195–208. USENIX Association, 2016.

[34] Simple Hit-Metering and Usage-Limiting for HTTP. https:
//www.ietf.org/rfc/rfc2227.txt.

[35] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante.
Drafting behind Akamai: Inferring network conditions based
on CDN redirections. IEEE/ACM Transactions on Networking
(TON), 17(6):1752–1765, 2009.

[36] A.-J. Su and A. Kuzmanovic. Thinning Akamai. In Proceedings
of the 8th ACM SIGCOMM Conference on Internet Measure-
ment, pages 29–42. ACM, 2008.

[37] S. Triukose, Z. Al-Qudah, and M. Rabinovich. Content delivery
networks: Protection or threat? In European Symposium on
Research in Computer Security, pages 371–389. Springer, 2009.

[38] The Trouble with Tor. https://blog.cloudflare.com/
the-trouble-with-tor/.

[39] P. Wendell and M. J. Freedman. Going viral: Flash crowds in
an open CDN. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, pages 549–558.
ACM, 2011.

[40] J. Xue, D. Choffnes, and J. Wang. CDNs meet CN: An empirical
study of CDN deployments in china. IEEE Access, 2017.

[41] The Zettabyte Era – Trends and Analysis – Cisco. http://
www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-
vni/vni-hyperconnectivity-wp.html.

[42] H. Zolfaghari and A. Houmansadr. Practical censorship evasion
leveraging content delivery networks. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1715–1726. ACM, 2016.

14

https://thestack.com/security/2017/03/29/district-court-rules-against-cloudflare-in-anti-piracy-suit/
https://thestack.com/security/2017/03/29/district-court-rules-against-cloudflare-in-anti-piracy-suit/
https://thestack.com/security/2017/03/29/district-court-rules-against-cloudflare-in-anti-piracy-suit/
https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-593-EN-F1-1.PDF
https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-593-EN-F1-1.PDF
https://venturebeat.com/2014/05/15/how-the-nsa-fbi-made-facebook-the-perfect-mass-surveillance-tool/
https://venturebeat.com/2014/05/15/how-the-nsa-fbi-made-facebook-the-perfect-mass-surveillance-tool/
https://venturebeat.com/2014/05/15/how-the-nsa-fbi-made-facebook-the-perfect-mass-surveillance-tool/
https://www.ietf.org/rfc/rfc2227.txt
https://www.ietf.org/rfc/rfc2227.txt
https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.cloudflare.com/the-trouble-with-tor/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

	I Introduction
	II Background
	II.A Content Distribution Networks
	II.B What CDNs Can See
	II.C Open Legal Questions

	III Threat Model and Security Goals
	III.A Threat Model
	III.B Security and Privacy Goals for OCDN
	III.C Performance Considerations

	IV Design
	IV.A OCDN Setup
	IV.B Requests & Responses
	IV.C Additional Options

	V OCDN Protocol
	V.A Publishing Content
	V.B Retrieving Content
	V.C Clients Joining & Leaving
	V.D Partial Deployment

	VI Implementation
	VII Security Analysis
	VIII Performance Analysis
	VIII.A OCDN Overhead
	VIII.B Scalability

	IX Discussion
	X Related Work
	XI Conclusion

