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Abstract
Many problems in computer networking rely on parsing collections
of network traces (e.g., traffic prioritization, intrusion detection).
Unfortunately, the availability and utility of these collections is
limited due to privacy concerns, data staleness, and low representa-
tiveness. While methods for generating data to augment collections
exist, they often fall short in replicating the quality of real-world
traffic In this paper, we i) survey the evolution of traffic simulators
and generators and ii) propose the use of state space models, specif-
ically Mamba, for packet-level, synthetic network trace generation
by modeling it as an unsupervised sequence generation problem.
Preliminary evaluation shows that state space models can generate
synthetic network traffic with higher statistical similarity to real
traffic than the state-of-the-art. Our approach thus has the poten-
tial to reliably generate realistic and informative synthetic network
traces for downstream computer networking tasks.
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• Networks ! Network simulations; • Computing method-
ologies ! Neural networks.
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1 Introduction
The increase in complexity of networked environments and the
number of network protocols and applications motivates robust
and adaptable strategies for network management and security
tasks. This requires collecting and sharing high-quality statistics,
attributes or features of this data, or further, the raw data itself,
∗Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0713-1/24/08
https://doi.org/10.1145/3672198.3673792

which can be tedious or even impossible under certain constraints
[1, 9, 32, 33, 46].Worse, networks are becoming increasingly difficult
to simulate via traditional methods (e.g., NS-3 [24], Harpoon [47])
as the scale and complexity of networked systems grows [21, 23,
41]. One approach to tackle these challenges is synthetic traffic
generation, which provides a controlled method to model, simulate,
and test network behaviors for various traffic types, without the
pitfalls of real-world data collection.

Current state-of-the-art (SOTA) synthetic traffic generationmeth-
ods apply one of two approaches. The first generates concise sets
of meta-attributes (i.e., flow statistics) for a network trace. These
attributes capture overarching characteristics of network flows, and
are primarily used for session-level workloads (e.g., heuristic-based
analyses, ML for networking). In contrast, the second generates
complete, raw network data at the per-packet level in packet cap-
ture (PCAP) form. This approach, offering a comprehensive view
of network communication, can be more versatile for downstream
tasks (e.g., analyses of session content, classification models).

Unfortunately, both approaches face a common challenge in
that the quality of generated data often falls short of expectation,
reflected in low statistical similarity at the raw-byte level to real
network data. Thus, generated traces may require tedious post-
generation correction to ensure protocol fidelity before being us-
able as either a replacement for, or supplement to, real network
data. Motivated to remedy these challenges, we explore how recent
work in sequence modeling might help in generating high-quality,
raw synthetic network traffic. In this paper, we treat the task of
generating synthetic network traffic as a sequence modeling prob-
lem by applying a state-space model (SSM) built on the Mamba
architecture [10] to networking data. Unlike transformer models
(the predominant SOTA for sequence modeling) whose time and
memory complexity scale quadratically with input length, Mamba
scales linearly. This allows our model to learn from, and generate
network traces of both better quality, and longer length than the
existing SOTA. Specifically, we present the following contributions:

(1) Survey of trace generation paradigms: We provide a
detailed overview of the evolution of synthetic traffic gener-
ators, their impact, and possible takeaways for motivating
future trace generation work.

(2) Apply SSMs to networking data for traffic generation:
We frame the task of synthetic network trace generation
as an unsupervised sequence generation problem, and train
a Mamba-based SSM model from scratch on computer net-
working data. We then demonstrate our model’s ability to
generate synthetic traces at the raw-byte (i.e., PCAP) level.
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Figure 1: Timeline of synthetic network trace generation methods.

(3) Superior trace generation quality and efficiency: We
evaluate traces generated by our model and find they better
capture complex intra-packet dependencies with additionally
higher fidelity, than existing SOTA approaches. Our model
pipeline further has a lower training and inference resource
footprint than existing, comparable approaches.

Building on our preliminary results, we provide a roadmap for
improving the generation quality and flexibility of our model. We
additionally discuss possible adaptations of our model for use in
various downstream networking tasks.

2 Related Work
Early efforts in synthetic data generation such as TRex [7], NS-
3 [14], and others [4, 6, 47, 49], are mostly simulation-based, requir-
ing extensive human expert efforts to correctly build and configure.
These tools can be limited as they depend on user-defined tem-
plates and may not necessarily capture the complex intra-flow (i.e.,
relationships between header fields across multiple packets) and
intra-packet (i.e., header field dependencies within individual pack-
ets) interactions reflective of complex real-world traffic. Recent
methods [16, 17, 27, 40, 55, 56, 58, 59] employ generative ML to
learn such interactions, enabling the automatic generation of new
synthetic traces. These approaches can generally be divided into
two categories: coarse and fine-grained. Figure 1 provides a chrono-
logical overview of the approaches discussed in this section in either
category, further discussed below.

2.1 Coarse-Grained Generators
Coarse-grained generators aim to synthesize meta-information or
summary statistics (e.g., flow duration and average packet sizes)
about network traffic flows (i.e., intra-flow dependencies). Such
tools [27, 40, 55, 56, 58] mainly rely on generative adversarial net-
works (GANs), training two competing neural networks against
each other for synthesizing new network traces from a training
dataset. A notable example is Lin et al.’s DoppelGANger [27], which
treats modeling network metric traces as a sequential time-series
generation task, conditioned on metadata like locations. This allows
any single header value or intra-flow metrics to be captured for
modeling. Unfortunately, this approach scales poorly, requiring
additional training for each new value that is desired to be captured.
Yin et al.’s NetShare [58] improves by generating aggregate flow
statistics (e.g., duration, packet count), or packet-level header field
values (e.g., time-to-live [TTL], protocol flags). While effective, it is

limited to a small, fixed subset of high-level network attribute, miss-
ing granular details like intra-flow dependencies (e.g., TCP options
and sequence numbers) and intra-packet dependencies (e.g., TCP
header bits influencing data offset). Thus, coarse-grained generators
often fail to capture these low-level dependencies that are necessary
for accurately mimicking real data.

2.2 Fine-Grained Generators
Fine-grained generators aim to capture both intra-flow and intra-
packet dependencies of network traffic by generating complete
packet captures, i.e., all raw packet bytes, to most accurately mimic
real-world traffic for downstream use.
Diffusion-based Approaches. Jiang et al.’s NetDiffusion [16] uses
image representations of network traces with a text-to-image dif-
fusion model to perform fine-grained trace generation. Diffusion
models are highly expressive, resulting in synthetic traces that
more accurately mimic real network dynamics. Unfortunately, this
expressiveness can produce noisy outputs that may compromise
protocol compliance. The authors attempt to mitigate this con-
cern using ControlNet [60] to impose dependencies as conditional
controls during generation. This improves resulting trace protocol
compliance, but overall is insufficient. While ControlNet may en-
sure that the distribution of packet header fields values generated
largely adhere to the protocol used by the flow, it cannot guarantee
the semantic accuracy of these fields, often requiring extensive
post-generation manual corrections.
Transformer-basedApproaches. Transformer-basedmodels [48]
leverage the attention mechanism [2] to learn a fine-grained repre-
sentation of the semantics of their input data in an unsupervised
fashion (encoder), and may be extended to use this representa-
tion for autoregressive generation (decoder). Many works have
applied the transformer to networking tasks (e.g., traffic classifi-
cation [8, 13, 26, 43, 44], networking specific Q&A [59]). However,
few have used the transformer for fine-grained traffic generation.
Meng et al.[34] and Wang et al. [51] train new variants of GPT-2
[37] and T5 [38] respectively, for coarse-grained generation at the
header field value level (i.e., similar to DoppelGANger). Qu et al.’s
TrafficGPT [36] is the most related to our work, presenting a GPT-2
variant that generates trace sequences up to 12,032 tokens in length
via various memory optimization strategies such as linear and local
window attention [20, 54], etc [22, 35]. Our Mamba-based modeling
approach differs from TrafficGPT as it provides improved training
time complexity and maximum generatable context length, which is
particularly critical in downstream applications where the analysis
of flow-level attributes over extended durations is essential (e.g.,
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malware/intrusion detection). Additionally, traces generated by
our architecture demonstrate better quality, evidenced by a higher
statistical resemblance to real data.

3 State Space Models and Traffic Generation
We adapt Mamba [10], a selective structured SSM, to synthesize fine-
grained network traces that capture both the intra-flow and intra-
packet dependencies of network traffic. We train a new Mamba
model from scratch on the raw byte values of packets from real-
world flows, to generate synthetic packets of continuous traffic
traces. We first provide background information on SSMs and our
motivation for using SSMs to generate high-quality synthetic traces
in Section 3.1 and 3.2. We then provide a technical overview of how
the general, and Mamba SSM1 operate in Section 3.3.

3.1 State Space Models
SSMs are probabilistic graphical models that build on the concept of
a state space from control engineering [19]. Conceptually, SSMs are
identical to Hidden Markov Models in objective (modeling discrete
observations over time), but operate using continuous, instead of
discrete latent variables. Instead of attention (the learning mecha-
nism used in transformer-based models such as GPT), SSMs encode
a hidden state, representative of prior observed context of an input
sequence, using recurrent scans. Gu et al. [11] and Voelker et al. [50]
showed that by fixing the state matrix used in SSMs, the encoded
context can accurately and efficiently model long-range dependen-
cies. Gu et al. extended these observations in the S4 convolution
kernel [12] to make SSMs practical for training, and more recently
in Mamba [10], where they introduce a SSM with a selection mech-
anism, and fixed state matrix. Mamba shows strong performance in
context dependent sequence generation (i.e., language modeling),
and has been extended to various domains, including computer
vision [29, 30, 53], DNA sequencing [42], document information
retrieval [57] and speech separation [25].

Although general SSMs have long existed in the control engineer-
ing space, they have only recently been optimized and operational-
ized by Gu et al. [10–12] in the Mamba architecture to function
as a possible alternative to transformer-based approaches for se-
quence modeling. We find only one recent application of Mamba
to the networking domain by Wang et al.[52], who create a variant,
NetMamba, to perform traffic classification. NetMamba claims bet-
ter classification accuracy than the existing SOTA, with improved
inference time and resource consumption. Our objective differs
from NetMamba, as we explore what modifications/adaptations are
needed to use Mamba for synthesizing raw data for network traces,
rather than performing traffic inference tasks.

3.2 Comparison with alternative methods
We chose the Mamba SSM architecture over other fine-grained gen-
eration methods for a number of reasons. Compared to diffusion
models, the tokenized input used by SSMs allows for a less pro-
cessed representation of networking data. Specifically, our model
processes sequences of the decimal values for the raw bytes of
flows, as compared to an encoded image representation in NetDif-
fusion derived using two steps (nPrint [15] intermediary format,
1For the rest of the paper, we will use “Mamba” and “Mamba SSM” interchangeably.

bit-based color assignment). Compared to transformer-based mod-
els, SSMs scale linearly (versus quadratically) with sequence length.
This allows our models to train on inputs four times longer and
generate sequences 5.5 times longer than TrafficGPT [36]2). This is
especially useful for networking data, where even a few seconds
of communication between nodes can exceed the conventional
context windows or capacities of other methods.

3.3 Selective Structured SSM (Mamba)
Mamba, and broadly, all SSMs, use the state space representation
introduced in control engineering by Kalman [19]. The general SSM
uses first-order ordinary linear differential equations to capture the
relationship (output) between unobserved variables (state) and a
series of continuous observations (input), irrespective of time (i.e., is
linear-time invariant). As themodel observesmore data, it encodes a
representation of the state that captures the prior context of inputs.
This state is then used to calculate an output for a given input,
and can be both discretized to be calculated as a recurrent neural
network in linear time, and unrolled to a convolutional neural
network for efficient training. On this basis, Mamba implements
two changes to the general SSM that provide structure and selection.

For structure, the state of general SSMs suffers from numerical
instability similar to the vanishing gradient in vanilla recurrent neu-
ral networks, where successive compression of prior state context
results in poor model performance. Mamba solves this instability by
enforcing structure on the general-case SSM state matrix (typically
randomly initialized), replacing it with a HiPPO matrix [11] from
prior work. The HiPPO matrix introduces a probability measure
that dictates how the SSM state is compressed, improving the ability
of an SSM to model long-range dependencies in sequences.

For selection, the linear-time invariant nature of the general
SSM lacks expressiveness, i.e., all discrete inputs compressed in
the state, affect the state with equal weighting. In the context of
language modeling, this prevents relevant “keywords” from more
heavily influencing the SSM state to develop a better semantic
understanding of input. Mamba improves SSM expressiveness by
removing the linear-time invariant quality from the general SSM,
making the model time-variant. Through this, the state is calculated
using learned (as compared to fixed) functions of the inputs.

Mamba’s structure and selection changes result in competitive
performance against transformer-based approaches for sequence
modeling with regard to generation quality, while simultaneously
providing better scaling (linear versus quadratic).

4 Modeling Network Data with State Space
Models

We apply the Mamba architecture to model computer networking
data to generate synthetic traces. Figure 2 provides an overview of
our modeling pipeline. We detail our steps taken to adapt Mamba
for use with networking data below.
Trace Pre-processing and Tokenization. We train our genera-
tion model on a tokenized representation of raw PCAP data at the
flow level. To detail, we first split each PCAP into its comprising

2Training/generation hardware: NVIDIA A40, 48GB VRAM (ours), NVIDIA Tesla
V100S, 32GB VRAM (theirs).
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Figure 2: Model training and generation process.

flows based on connection (i.e., 5-tuple of source IP, source port, des-
tination IP, destination port, IP protocol) using RECR�URNKVVGT [45],
resulting in a set of = flows i.e., PCAP = {5=}=2N, where 5 denotes
a flow. We then parse each packet in a flow to its sequence of
raw bytes in decimal format i.e., RCEMGV = Seq(5=)8 = {(5=)8 [1]} [
{(5=)8 [2]}[ . . . {(5=)8 [ 9]}, where 8 denotes the packet index in flow
5= , 9 denotes the byte-offset in packet 8 , and {(5=)8 [ 9]} 2 [0, 255].
Next, we join these packet sequences, delimiting them with a cus-
tom �^RMV^ special token to form a training sample. Finally, we
prepend each sample with a �^.#$'.^ special token that denotes
its traffic type. Thus, UCORNG = {�^.#$'.^ , Seq(5=)1, �^RMV^ ,
Seq(5=)2, . . . , Seq(5=)<}, where< denotes the number of packets
in a given flow. We train a new tokenizer of the same base-type as
Mamba on these representations (GPT-NeoX-20B [3]), adding the
�^RMV^ and �^.#$'.^ special tokens.
Model Implementation. We use the open sourced model imple-
mentation released by Gu et al. accompanying the original Mamba
work [10]. Specifically, this combines the Mamba SSM described
in the previous section with a gated multilayer perceptron [28], to
form the Mamba block. Appendix A.1 provides further details on
the architecture and its functionality. The Mamba block operates in
a causal (left-to-right) manner, and trains using the common next
token prediction task evaluated via cross entropy loss.
Trace Generation. Our model generates synthetic network traces
by taking in two arguments: a generation seed and length. The
seed is a sequence consisting of a flow’s label token, and sequence
of raw bytes that comprise its first packet (e.g., �^VYKVEJ^ ���
�� �����), and is equivalent to a start prompt in NLP generative
models. The generation length dictates the maximum number of
tokens output by the model. The output of the model resembles the
format of the training data, a sequence of raw bytes of packets in
decimal format, with each packet delimited by a �^RMV^ special
token. We then convert this raw, string-based output to binary
format for use and evaluation as a PCAP file.

5 Preliminary Evaluation
We assess the effectiveness of our approach by examining the packet-
level, fine-grained generation quality of traces generated by our
model. Specifically, we perform or examine:

(1) Flexibility of our model to generate traces of varying lengths
without quality degradation.

(2) Statistical resemblance of synthetic traces generated by our
model to real-world network data.

(3) Empirical verification that our model learns, rather than
memorizes the interactions in network data.

Content Type Size
Macro-Label # Micro-Labels Raw Flows
Video Streaming [5] 4 6.36 GiB 10,032
Video Conferencing [31] 3 17.36 GiB 13,911
Social Media [18] 3 5.40 GiB 3,896

Table 1: Service-classification dataset overview.

We describe the datasets used for this preliminary evaluation, im-
plementation specifics, training recipes, and results below.

5.1 Experiment Setup
Dataset Description. For generation quality assessment, it is es-
sential to use network trace datasets thoroughly cleaned to reduce
noise, i.e., unintended traffic capture. Statistical comparisons be-
tween real and synthetic traffic are more credible and less variable
with clean datasets, which also enhance the effectiveness of traffic
analysis tools in downstream applications. However, many public
datasets are unsuitable due to high noise levels. For our experiment,
we use three representative, labeled datasets previously used in
similar studies for synthetic trace generation, comprised of video
streaming [5], video conferencing [31], and social media data [18],
as detailed in Table 1. Each dataset contains traffic from its respec-
tive application domain, divided into flows in PCAP format. We
further filter these flows to ensure their relevance to the labeled
application domain by extracting relevant DNS queries, resolving
them to IP addresses, and filtering the packets based on these ad-
dresses. We aggregate these datasets to form a service-classification
dataset, which we use to both train and evaluate our model.
Pre-training configuration.Wepre-train ourmodel on this service-
classification dataset using a single NVIDIA A40 48GB PCIe GPU,
with gradient clip value of 1.0 and the AdamW optimizer with learn-
ing rate 54 � 4. We leave all other optimizer values as their defaults
(V = (0.9, 0.999), n = 14 � 8, weight decay = 14 � 2). We use the
same configuration for dimension (768) and number of layers (24) as
the smallest 125 million parameter pre-trained Mamba. We extend
the base Mamba tokenizer to include the delimiting (�^RMV^ ) and
ten label special tokens for the traffic in the dataset. We train the
generation model following the process discussed in Section 4, first
splitting all PCAPs into their comprising flows, parsing them into
decimal representations, and finally tokenizing these inputs. We
run pre-training using batch size of one, with maximum sequence
length of 50,000 tokens (the largest possible given our hardware
and configuration; training samples longer than this length are
truncated), for 50 epochs, until cross-entropy loss converges at
1.32 nats. Here, we minimize batch size and maximize per sample
maximum sequence length, to have the model learn from as large
of individual contexts of sequential packets in a flow as possible.

5.2 Evaluating generation quality
Our evaluation focuses on our model’s ability to accurately repro-
duce intra-packet and intra-flow dependencies observed in real
traces. Specifically, we aim to generate synthetic traffic that closely
resembles real traffic dynamics at the packet level.The conventional
empirical metric for assessing this quality, as noted in prior studies
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[16, 36, 58], involves measuring the statistical similarity between
the raw values of generated packet header fields and those from
real traces. Below, we detail and discuss our generation process,
benchmarks, and comparative results.
Conditioned Trace Generation. We generate synthetic network
flows by using the first packet from each flow in the service-classification
dataset as the seed to create the corresponding synthetic trace, as
depicted in Figure 2. Recall that each packet begins with its cor-
responding label special token (e.g., �^VYKVEJ^ , �^[QWVWDG^ ,
�^\QQO^ ) providing the trace type, to indicate to the model the
type of traffic to generate. Therefore, a typical seed may resemble
�^VYKVEJ^ ��� ��� ����� �^RMV^ , giving the model contex-
tual cues for accurate synthetic trace generation. We set the gen-
eration length to be 10 tokens greater than the length of the real
tokenized trace to ensure the synthetic versions have similar packet
count, and to allow flexibility for slight variations and adjustments
(e.g., truncating malformed packets).
Benchmark Setup.We benchmark output traces generated by our
model against representative SOTA network trace generators: Net-
Share [58] for coarse-grained and NetDiffusion [16] for fine-grained
generation. Both models are trained on the service-classification
dataset, producing corresponding synthetic traces. For NetDiffusion,
a post-generation correction heuristic is required to ensure seman-
tic coherence in generated traces, which our approach does not need.
We report the NetDiffusion results after applying the correction
heuristic. We also use the statistical similarity metrics reported by
TrafficGPT to compare against the latest transformer-based archi-
tecture for fine-grained trace generation. Our comparison is based
on their published results, as TrafficGPT is not open source and
uses different data. Note that TrafficGPT focuses on a limited set
of features (e.g., IP addresses, ports), whereas the benchmark for
NetShare, NetDiffusion, and our model consider similarity across
all header values of the generated flow. Thus, although we cannot
retrain TrafficGPT on our dataset, we acknowledge that its reported
results likely showcase its optimal performance.
Generated Trace Length. We verify that our model can generate
long traces while maintaining high quality. We observe the longest
trace generated by our model has length of 1,081 packets (65,943
tokens), improving slightly on NetDiffusion’s max trace genera-
tion length (1,024), and is 5.5 times longer than TrafficGPT’s max
sequence generation length (12,032 tokens). Appendix Table 1 pro-
vides more detail on the length of traces generated by our model.
Recall that our trace generation process prompts our model with
a generation length only 10 tokens longer than the length of the
original trace from which the generation seed was taken. As such,
we do not examine the maximum possible length of traces gener-
ated by our model in this evaluation. In theory, however, this value
can be significantly larger (depending on traffic type) due to the
linear scaling of the architecture than presented in this study. We
leave a more detailed evaluation of this aspect to future work.
Statistical Similarity. We assess the statistical similarity between
the generated traces and their respective ground truth representa-
tions using the average Jensen-Shannon Divergence (JSD), Total
Variation Distance (TVD), and Hellinger Distance (HD) metrics
across all header field values. Lower scores in these metrics rep-
resent higher statistical generation fidelity compared to the real
traces. To ensure uniformity across comparisons, all synthetic and

Data Format Generation Method JSD TVD HD

NetFlow Random Generation 0.67 0.80 0.76
NetShare 0.16 0.16 0.18

Raw PCAP

Random Generation 0.82 0.99 0.95
NetDiffusion† 0.04 0.04 0.05

TrafficGPT* 0.16* N/A N/A
Ours 0.02 0.01 0.02

† Post-generation correction applied; * Results as reported in [36].
Table 2: Statistical similarity versus real traces (packet-level,
fine-grained generation quality evaluation).

real traces are converted to a one-hot encoded binary representa-
tion using the nPrint format [15]. We include a crude upper-bound
benchmark as a baseline by synthesizing all values randomly, with-
out any model training or heuristic application.

Table 2 shows that our model distinguishes itself by achieving
the lowest JSD, TVD, and HD scores among all evaluated network
trace generators. Compared to the coarse-grained NetShare gen-
erator, we generate finer-grained raw traffic with closer statistical
resemblance to real network traffic, achieving consistently lower
metric scores, even though NetShare generates simpler NetFlow
attributes that are more likely to achieve higher statistical similarity.
Further, when comparing our model to the fine-grained NetDif-
fusion method, our approach still leads by a notable margin in
all three statistical similarity metrics. This is particularly signif-
icant considering these results are based on output without any
post-generation correction, which NetDiffusion requires to ensure
semantic coherence. Considering reported results from TrafficGPT,
which also treats the trace generation task as a sequence modeling
problem, our approach still yields better fine-grained generation
quality, despite the fact that TrafficGPT’s results are calculated
on fields with relatively fixed and consistent values. Overall, our
model’s performance suggests a high degree of statistical fidelity
to the original traffic patterns, mimicking real-world behavior.
Learning Versus Memorization. To verify our model’s learning
capabilities, we perform one-to-one byte-wise comparison of the
first 100 packets in each of our generated traces, and their corre-
sponding real-world packets, from which the generation seed is
extracted. Remarkably, on average, only one packet is identical,
with the other 99 being different. The single identical packet can be
explained by our trace generation process, where we prompt our
model with a seed consisting of the service label, and first packet of
a real-world flow. Common to other sequence generation models,
our model copies the seed as part of the output sequence. All other
generated packets have variances that separate them from their
real-world counterparts. Further, in these packets, the average per-
centage of differing bytes is 6.57%. We analyze the distribution of
these bytes (detailed results in Appendix Table 2) and find that they
largely manifest in fields non-essential to flow state, indicating our
model can discern between fields in the seed that should remain
fixed (e.g., source, destination IP addresses), and fields that when
changed, will not disrupt communication. These results show that
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our model effectively captures and generalizes underlying network
patterns, rather than memorizing specific data.

6 Open Challenges
Targeted generation and improving output flexibility. Train-
ing a Mamba SSM-based generation model using all contents from
all flow packets allows the model to learn the important semantic
relationships and underlying dependencies in general flows, evi-
dent from the high levels of statistical similarity to real traffic and
observed packet byte distribution in our evaluation. One useful
future direction is to fine-tune our general model to create models
that can accurately generate the distinct phases or components ob-
served in authentic network traces. As different stages of a network
flow or session exhibit unique patterns and/or behaviors, more
targeted models could better capture the specific intra-packet and
intra-flow dynamics of these segments, improving both the quality
and flexibility of generated data. Such fine-tuned models could also
be extended to model the specific workloads or dynamics of par-
ticular network types (e.g., internal data centers, content delivery
networks). This flexibility could be particularly useful for reducing
the overhead of training and data generation for downstream ap-
plications requiring only a subset of flow data. Finally, additional
adjustments to the trace generation process should be explored to
examine if traffic characteristic attributes (e.g., mix of application
types) can be more explicitly conveyed to be enforced by the model.
Temporal generation in synthetic traces. Our current model
produces raw byte values for packets across different network lay-
ers, but does not generate temporal information (i.e., timestamps).
Because timestamps are determined by packet capturing tools at
the OS level and are not embedded in the raw packet bytes, they
are not currently considered in the training/generation process
for our model. Temporal information provides critical details for
various tasks, such as traffic classification, and attack detection.
Unfortunately, directly adopting the vanilla Mamba architecture
(as done in this study) for temporal generation is insufficient; it is
designed for generating sequential discrete values, whereas tem-
poral information is continuous. Thus, to improve the practicality
of this approach, the underlying Mamba/SSM architecture must be
modified to generate in-tandem both discrete packet-level values,
and continuous timestamp values.
Better evaluation of synthetic trace quality and utility. While
statistical similarity is an important quality indicator, it does not
guarantee that generated synthetic traces are practical and/or ad-
here to protocol constraints. To illustrate, consider the IP version
header, which in practice should only take on one of two values:
���� (IPv4) or ���� (IPv6). A synthetically generated value of ����,
though statistically close to the valid values, would likely result
in a dropped packet if transmitted in the real-world. As such, it
is crucial to further inspect these synthetic traces to ensure their
coherence. Next, as mentioned in Section 5.2, the maximum gen-
eratable length of traces and their resulting quality, should also
be examined. Finally, we also note the importance of evaluating
the utility of generated traces in practice in common downstream
tasks (e.g., training and augmenting machine learning models on
network traffic, verifying heuristic-based analysis tools).

7 Conclusion
In this work, we presented a new approach to synthetic network
trace generation, posing the task as a unsupervised sequence gener-
ation problem using the Mamba state-space model architecture. Our
preliminary evaluation demonstrates that this method produces
synthetic traces with significantly higher statistical similarity to
real-world traffic compared to current state-of-the-art techniques.
We outline future improvements and applications for our model
towards improving the realism and utility of synthetic network
traces, for use in different downstream tasks.

This paper does not raise any ethical concerns.
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Appendices
Appendices are supportingmaterial that has not been peer-reviewed.

A Configuration
The following section provides details referenced in the paper re-
garding model architecture/training.

A.1 Mamba Block

Linear 
Projection

Linear 
Projection

?

Causal 
Convolution

?

Mamba SSM

Linear 
Projection

Figure 1: Architecture for the Mamba block, described in
Section 4. f denotes the SiLU/Swish non-linear activation. ⌦
denotes element-wise multiply.

Figure 1 depicts the Mamba block. Here, an input sequence is
linearly projected twice to the input dimension. One copy is passed
through a FFT-based causal convolution and SiLu non-linear activa-
tion [39], before being used as input to the Mamba SSM.This allows
for efficient training in parallel via convolution, and improves ap-
proximation of the true input distribution. The second copy passes
only through a SiLu activation, and “gates” the output of the Mamba
SSM from the first copy, i.e., using element-wise multiplication, en-
hances or filters the Mamba SSM output. The gated output is then
linearly projected back to the original input dimension.

B Evaluation
The following section provides additional details referenced in the
paper regarding model evaluation.

B.1 Generation Length

Metric Max Min Mean Std Dev Var
Packets 1081 4 123.17 230.57 53161.55
Table 1: Packet count statistics of generated flows.

Table 1 provides statistics for packet length (in bytes) of packets in
our generated synthetic traces.

B.2 Comparing synthetic and real-world packet
data

Field Average Change
TCP_ack 1982981477.85
TCP_seq 1475508827.26
TCP_chksum 24859.46
TCP_sport 23406.24
TCP_dport 23406.24
IP_chksum 6369.34
IP_id 2924.89
TCP_window 1136.37
IP_len 507.86
IP_ttl 11.52
TCP_dataofs 2.16
Raw_load 1.00
TCP_options 0.99
TCP_flags 0.86
Ether_dst 0.48
Ether_src 0.48
IP_src 0.48
IP_dst 0.48
Ether_type 0.00
IP_version 0.00
IP_ihl 0.00
IP_tos 0.00
IP_flags 0.00
IP_frag 0.00
IP_proto 0.00
IP_options 0.00
TCP_reserved 0.00
TCP_urgptr 0.00

Table 2: Average change of representative header fields

Table 2 shows the average change in packet bytes of synthetic
traces and real-world data from our service-classification dataset.
Average change is calculated by comparing the fields of real and
synthetic packets, computing the absolute differences for each field,
and averaging those differences across all compared packets.


