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Abstract
Emerging protocols such as DNS-over-HTTPS (DoH) and

DNS-over-TLS (DoT) improve the privacy of DNS queries
and responses. While this trend towards encryption is pos-
itive, deployment of these protocols has in some cases re-
sulted in further centralization of the DNS, which intro-
duces new challenges. In particular, centralization has con-
sequences for performance, privacy, and availability; a po-
tentially greater concern is that it has become more diffi-
cult to control the choice of DNS recursive resolver, par-
ticularly for IoT devices. Ultimately, the best strategy for
selecting among one or more recursive resolvers may ulti-
mately depend on circumstance, user, and even device. Ac-
cordingly, the DNS architecture must permit flexibility in
allowing users, devices, and applications to specify these
strategies. Towards this goal of increased de-centralization
and improved flexibility, this paper presents the design and
implementation of a refactored DNS resolver architecture
that allows for de-centralized name resolution, preserving
the benefits of encrypted DNS while satisfying other desir-
able properties, including performance and privacy.

CCS Concepts
• Networks → Network protocol design; Network de-
sign principles.
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1 Introduction
DNS has long been insecure and vulnerable to eavesdrop-

ping, but that reality is changing, as protocols for encrypted
DNS have recently been proposed and deployed, notably
DNS-over-TLS (DoT) and DNS-over-HTTPS (DoH). DoH,
in particular, has seen rapid adoption, as browser vendors
have begun to move name resolution functionality into ap-
plications themselves, whereas in the past it was typically
done at the OS level. DoH deployment depends on coor-
dination between the stub resolver at the client side (e.g.,
in the browser) and the operator of the recursive resolver.
In some cases, that coordination is straightforward because
the same organization operates both the browser and the re-
solver (e.g., Google offers both a browser and a public DNS
service). In other cases, two organizations coordinate—as is
the case where Mozilla has collaborated with Cloudflare to
deploy an encrypted DNS service in Firefox, with Cloudflare
serving as the primary recursive resolver.

DNS encryption is unquestionably a positive trend, but
it is accompanied by a troubling consequence: the increased
centralization of a critical part of the Internet infrastructure.
This organizational centralization makes the DNS infras-
tructure itself less resilient to disruption from misconfig-
uration, attack, and outright manipulation. These threats
are more than existential: An attack on DNS infrastruc-
ture in 2016 rendered many websites unreachable [22]. DNS
queries are ripe for widespread manipulation, resulting in
information control and censorship. DNS misconfiguration
is also commonplace [5]. Centralization also has potentially
adverse effects on competition, introducing new barriers to
entry as organizations who operate recursive resolvers have
access to DNS queries that can be used for a competitive ad-
vantage in othermarket sectors, from content delivery to ad-
vertising [4]. The increased centralization of DNS data into
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a handful of entities has also raised privacy concerns about
tracking users’ browsing patterns through their queries.

These high stakes have resulted in heated arguments and
battles from mailing lists to standardization bodies, such as
the Internet Engineering Task Force (IETF), whereby each
of these stakeholders seeks to retain control over the DNS.
Faced with the prospect of losing visibility into DNS queries,
some ISPs have partnered with Mozilla to become trusted
recursive resolvers. Users who have privacy concerns over
their ISPs eavesdropping on their DNS traffic might be con-
cerned by this development. Similarly, users who are more
concerned with advertisers seeing their browsing patterns
would be rightfully concerned that the IoT devices that they
purchase from these same companies default to sending
DNS queries to the resolver of the same company (e.g., many
of Google’s IoT products are hard-wired to use Google Pub-
lic DNS as a resolver [23]). Left behind in all of these power
struggles is the user, who often ends up relying on a central-
ized DNS operator based on default configuration settings
and the inertia that comes with changing defaults.

Centralization trends continue: In 2017, more than 40%
of DNS traffic from Tor was resolved via Google Public
DNS. More recent statistics have shown that more than
30% of DNS queries to ccTLDs come from five large cloud
providers, two of whom offer their own centralized DNS
service [21]. A small number of organizations who operate
DNS resolvers are gaining increased market share. This cen-
tralization is occurring in spite of the fact that anyone can
operate a recursive resolver, and in fact hundreds of orga-
nizations do just that. The trends towards centralization of
this critical part of the Internet are driven not by technical
limitations, but rather by ongoing trends of Internet consol-
idation, coupled with the bundling of critical functionality
like name resolution into applications themselves.

In this paper, we posit that encryption of the DNS need not
imply centralization of DNS queries at a resolver (or set of
resolvers) operated by a single organization and present an
architecture that permits the deployment of encrypted DNS
protocols without coupling decisions about resolvers to the
default choices made by a particular browser vendor or
other connected device (e.g., consumer IoT devices). Specifi-
cally, we develop a public, open-source, configurable stub re-
solver, based on dnscrypt-proxy, that allows users to con-
figure how they want their encrypted DNS queries to be dis-
tributed across a collection of resolvers. This custom proxy
allows a user to specify both the set of resolvers that any par-
ticular application or device should use, as well as the strat-
egy for how those queries should be distributed across the
set of resolvers that a user specifies. We have released this
stub resolver as an open-source fork of dnscrypt-proxy so
that others can use and extend it.

2 Background and Related Work
In this section, we provide background on the develop-

ment of encrypted DNS protocols and explain how these
protocols have led to a centralization of DNS.

2.1 Encrypted DNS Protocols
DNS queries and responses have historically been unen-

crypted, which has garnered concern in recent years, given
research that has demonstrated that DNS traffic can be used
to discover private information about users, ranging from
the websites and webpages that they visit to the “smart” de-
vices that they use (and how they operate them).

T-DNS[24] address security issues with DNS, such as lack
of confidentiality and amplified denial-of-service attacks. T-
DNS has not been widely adopted, but it served as the pri-
mary inspiration for DNS-over-TLS (DoT) [16]. DNS-over-
HTTPS (DoH) [13] aims to solve the same problems as DoT,
but uses HTTP as a transport protocol. Other work investi-
gated the adoption of secure DNS and their real-world ben-
efits. Hounsel et al. measured web performance when us-
ing encrypted DNS protocols and found that in some cases
the newer protocols can outperform conventional DNS [14].
Recent proposals from Mozilla and Google involve sending
DoH queries directly from the browser to a recursive re-
solver (sometimes simply referred to as a “resolver”) as con-
figured in the browser (perhaps even by default, although
as of this writing the default settings have not yet changed).
Similarly, the Android OS makes it possible to route all DNS
queries via DoT to a Google-operated resolver [18].

2.2 DNS Centralization
From a user privacy perspective, DNS encryption is

largely a positive development, but an emergent side ef-
fect is the centralization of the protocol and reduced lo-
cal control. Clients that are configured to use DoT or DoH
operate using centralized architectures, whereby the client
sends all DoT or DoH queries to a single recursive resolver.
Conventional DNS would initially appear to share the same
characteristics: a client typically sends all queries to its lo-
cal resolver, typically one that is configured via DHCP (i.e.,
configured by a local network authority). Conversely, DoH
has shifted name resolution functionality into applications
themselves, shifting control over configuration to browser
vendors, and in some cases, IoT device vendors. These cen-
tralization trends have occurred rapidly, over a relatively
short timespan. In June 2018, Mozilla announced a partner-
ship with Cloudflare to deploy DoH to Firefox desktop users
in the United States [20]. Mozilla implements DoH in the
browser and Cloudflare operates a recursive resolver that
supports DoH. Initially, this option was enabled in Firefox
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Nightly builds; over the course of 18 months, Mozilla transi-
tioned to sending all DNS queries to Cloudflare via DoH by
default. In February 2020, Mozilla enabled DoH by default
for all Firefox users in the United States [8].

Foremski et al. find that the top 10% of DNS recur-
sors serve approximately 50% of DNS traffic [11]. Moura
et al. [21] also encounter centralization in their study
of DNS requests to two country code top-level domains
(ccTLD), with five large cloud providers being responsible
for over 30% of all queries for the ccTLDs of the Netherlands
and New Zealand. Recent developments suggest that these
trends could be reversed; for example, Hoang et al. [12] pro-
pose and evaluate K-resolver, which distributes queries over
multiple DoH recursors in Firefox, so that no single resolver
can build a complete profile of the user and each recursor
only learns a subset of domains the user resolved. Arkko et
al. propose several strategies for distributing DNS queries
and discuss the performance and privacy trade-offs of each
strategy [2]. Other previous work also shows that distribut-
ing DNS queries across multiple resolvers in various fash-
ions can yield acceptable performance [6, 14]. This paper
extends this past work, adding additional distribution strate-
gies. Our work also shifts control of name resolution deci-
sions out of individual applications and allows all devices
passing through our proxy to benefit from DNS query dis-
tribution strategies. This is critical as many devices, particu-
larly IoT devices, make DNS configuration opaque and chal-
lenging. Our design also allows for rule-based DNS strategy
selection such as matching on client MAC or IP addresses.

3 System Design and Implementation
Decisions about DNS resolution should occur at a

single place: a separate stub resolver that performs
resolution for all applications and devices for which
a user or users have a common set of preferences. This
has traditionally been the role of an operating system stub
resolver running on a host device or a router, but in recent
years, applications have performed DNS resolution on their
own. By returning to how DNS resolution is traditionally
performed, the stub resolver is able to provide applications,
ISPs, and users a single place to define how DNS name reso-
lution should occur. Such modularization also enables us to
experiment with new features for DNS resolution.

3.1 Overview
We propose that a stub resolver perform DNS resolution

as follows:

(1) the stub resolver discovers a collection of upstream re-
solvers that support DoH, along with various charac-
teristics of those resolvers (e.g., geographic location).
This configuration can manually performed by the

device owner, or automatically through negotiation
with an upstream network operator (e.g., via DHCP).

(2) a user can specify specific requirements or prefer-
ences about preferred resolvers or goals (e.g., a pref-
erence to avoid a specific location, geography or ISP;
or a preference of privacy over performance or vice
versa); or, alternatively, an explicit selection;

(3) the stub selects DoH resolvers by matching availabil-
ity with user preference; and

(4) the stub distributes queries across multiple DoH re-
solvers to reduce centralization based on a user-
specified strategy.

This design bears some resemblance to the behavior of an
operating system stub resolver, but bears the additional
characteristics of configurability, and the option to place the
stub resolver at a point in the network that is independent
of any device but common to a set of user (or users) who
share common preferences, such as a home network router.

For wide-scale deployment, we envision that operating
systems will implement the proposed stub resolver, simi-
lar to Windows and Android adding native support for en-
cryptedDNS [17, 18].We acknowledge that this solution can
be circumvented: Applications and IoT devices could bypass
the proxy by directly querying resolvers of their choice, es-
pecially if DNS queries are encrypted.

3.2 Design Principles
A separate stub resolver that can resolve queries for all

users and deviceswho share preferences about performance,
privacy, security, and other considerations is an appropriate
location to address DNS centralization.
The stub resolver should not presume an outcome
with respect to the set of resolvers or the strategies for
distributing queries across them. As described later in
this section, we envision a stub resolver that affords many
possible configuration options, and Section 3.4 on the fol-
lowing page explores one such customization option that in-
volves decentralizing DNS queries across multiple recursive
resolvers, using one of many possible distribution strategies.
Such a level of configurability required only modest modi-
fications to existing DNS stub resolvers, as we describe in
Section 3.3.
Users should be able to choose how DNS queries are
resolved, to implement these choices for all devices
on their network. In contrast to the status quo, where
browsers perform encrypted DNS resolution on behalf of
users and where other Internet-connected devices may se-
lect their own DNS resolution mechanism—resolving all
DNS queries in a separate stub resolver that a user can con-
figure and customize provides more choice to the user. (A
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separate, important question concerns whether users under-
stand the consequences of these choices, and how to make
those choices visible. We are currently conducting a user
survey to understand this question.)
All stakeholders should be able access this point of
control, to allow for optimizations and customiza-
tions. In contrast to the current architecture, where browser
and device vendors hold control over which entities can be
recursive resolvers and which resolvers are selected by de-
fault, a separate stub resolver can potentially be controlled
by any of the stakeholders. Naturally, we expect that there
will be push and pull, and even cooperation (or collusion)
among these entities. But, modularizing the DNS resolution
process in this fashion will make those actions visible: An
anti-competitive maneuver such as restricting an API to
configure the stub, or collusion between content providers
and browser vendors would be plainly apparent in such an
architecture—and likely reversible, if not through alternate
implementations, then via regulatory mechanisms.

3.3 Prototype Implementation
We forked the open-source dnscrypt-proxy stub re-

solver [9] to support new strategies and policies to de-
centralize DNS queries, as described in Section 3.4. We
extended the getOne() function within serversInfo.go,
which indexes into an array of upstream resolvers for
each query based on which distribution strategy is spec-
ified in the configuration file [10]. The prototype is pub-
licly available (https://github.com/noise-lab/ddns). We in-
clude instructions for installing and running the proxy, as
well as code for running performance measurements. The
proxy supports DoH and DNSCrypt, and it can run on both
host devices and routers. In the configuration file for the
proxy, users can specify which strategy they wish to use
and which resolvers they wish to distribute queries over.

There are several possible applications for distributing
queries between multiple resolvers for a device or local net-
work. The main use case we envision is giving users control
over the share of their DNS queries that various resolvers
collect, which may enhance their privacy. We also envision
giving network operators additional control over how en-
crypted DNS resolution is performed by devices they own
on their networks. For example, network operators in an
enterprise environment may want to map queries from cer-
tain devices to (encrypted) DNS resolvers that they operate,
while allowing all other devices to use other resolvers. This
would enable network operators to support split-horizon
DNS while also balancing concerns for DNS privacy. Home
network operators may also wish to forward queries from
certain devices to certain resolvers to limit the information
certain parties have about them. IoT devices like Google

Nest may communicate with Google servers for functional-
ity, so it may make sense to forward DNS queries for these
devices to resolvers not owned by Google.

Although we do not advocate for a particular query dis-
tribution strategy, we argue that the proxy should make a
default choice to achieve wide-scale deployment, as exist-
ing applications such as browsers already do. Future work
should conduct user studies to inform what the default con-
figuration should be.

3.4 Distributing DNS Queries
In this section, we describe several strategies for DNS res-

olution that the prototype implements.
Hash-Based Distribution In a hash-based distribution,
second-level domain names (SLDs) are hashed to index
into a list of resolvers, meaning that queries for the
same SLD will always be sent to the same resolver. For
example, all queries issued by a client for google.com
and images.google.com will be sent to the same re-
solver. Furthermore, if the same client later queries
images.google.com, the query will be forwarded to the
same resolver as before.This strategy ensures that no two re-
solvers receive queries for the same domain name, but some
resolvers may receive a larger share of queries. Furthermore,
this strategy may be less robust to failure: If a resolver fails,
users may not be able to perform DNS resolution for certain
domain names.
RandomDistribution In the random distribution strategy,
queries are randomly sent to a set of defined resolvers R,
resulting in each resolver handling 1

R of the client’s queries.
This is a simple strategy, and recovery from failure is simple:
If a resolver is down, users can send their queries to another
random resolver. We re-use the random distribution code
that was originally implemented by dnscrypt-proxy.
Round-Robin Distribution Using this strategy, queries
are sequentially striped across a set of resolvers R. The
round-robin strategy results in each resolver would be as-
signed 1

R of the client’s queries. This strategy ensures that
queries are evenly distributed over multiple resolvers, but it
enablesmultiple resolvers to receive queries for the same do-
main name over time. As with random distribution, round-
robin distribution may provide users with more resilience
to failure.

4 Prototype Evaluation
We explore how the architecture can enable de-

centralization of queries, and evaluate its effect on CDN
localization, performance, and privacy.
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Figure 1: TCP and SSL setup times to CDN servers operated by Cloud-
flare and Google. Each line shows setup times when a particular DNS
resolver is used for either Cloudflare or Google hosted content.

4.1 Performance Effects
How Does Query Distribution Affect CDN Localiza-
tion? We seek to understand whether distributing queries
across multiple recursive resolvers could negatively affect
CDN localization. We fetch each HTTP request from the
requests_desktop table in the HTTP Archive for October
2020 [15]. We also use information provided by the HTTP
Archive to determine which CDN each domain name hosts
its content on, if applicable. For comparison purposes, we
study content that is hosted by Cloudflare or Google, as
these providers also both operate DNS resolvers. We resolve
the domain names twice, once using Cloudflare’s DNS and
once using Google’s, for each request that was hosted by ei-
ther Cloudflare or Google’s CDN networks, andmeasure the
latency for TCP and SSL connection setup to the resolved
IPs from a 500 Mbps residential fiber connection.

Figure 1 shows the cumulative distribution function
(CDF) for combined TCP and TLS setup times for a given
resolver and CDN. For example, the line that corresponds to
”Google - Cloudflare” shows combined TCP and TLS setup
times when Google’s resolver is used to resolve the domain
names of content hosted on Cloudflare’s CDN. We find that
concerns over whether distributing queries over multiple re-
solvers will affect CDN localization are not significant in our
experiment. When either Google’s resolver or Cloudflare’s
resolver is used to resolver Google-hosted content, TCP and
TLS setup times follow the same distribution. The distribu-
tions for each resolver are slightly different when Cloudflare
content is resolved, but for the most part, the distributions
are very similar. We note that Google and Cloudflare host
two of the most popular resolvers, but we expect similar re-
sults with any resolver that is widely distributed.
What is the Effect of Query Distribution on Page Load
Times? We performed page loads from several vantage
points for 20 days. We created an Amazon EC2 instance at

Location Hash Random Round-robin

California 2.57 2.55 2.52
Ohio 2.30 2.30 2.31
Oregon 2.85 2.75 2.70
N. Virginia 1.97 2.06 2.08

Table 1: Median page load times (in seconds) from each vantage
point using each query distribution strategy.

Location Cloudflare NextDNS Google Quad9

California 2.51 2.53 2.50 2.63
Ohio 2.28 2.43 2.27 2.32
Oregon 2.77 2.78 2.85 2.96
N. Virginia 2.05 2.18 2.03 2.12

Table 2: Median page load times (in seconds) from each vantage
point using a single resolver for all DNS queries.

four vantage points–Ohio, North Virginia, California, and
Oregon–that each ran Debian Linux. To perform our mea-
surements, we extended a Docker image created by Houn-
sel et al. that performs page loads using a headless ver-
sion of Mozilla Firefox 84.0.1 controlled by Selenium [14].
Each page load is performed within a separate Docker con-
tainer. Once we launch a container, we first run our fork of
dnscrypt-proxy within the container with a configuration
file that corresponds to the strategy that we intend to mea-
sure. We then modify /etc/resolv.conf to use our stub re-
solver, and we initiate a page load. Once the page load com-
pletes, an HTTPArchive Object (HAR) corresponding to the
page load is extracted from the container, and we close the
container. We read the timing for the onLoad event in each
HAR to measure page load times. 1 We used the top 1,000
websites on the Tranco top-list for December 12th, 2020 to
perform measurements [19].

For our query distribution strategies, we used the DoH
resolvers provided by Cloudflare, Google, Quad9, and
NextDNS. We chose these resolvers due to their popular-
ity and their support in major browsers. For example, as of
January 13th, 2021, Cloudflare and NextDNS are the two de-
fault DoH providers that are listed in Mozilla Firefox 84.0.1.
Similarly, Google Chrome automatically upgrades users
of Cloudflare, NextDNS, Google, and Quad9’s resolvers to
DoH [3, 7]. In addition to performing pageloads with the
query distribution strategies using these resolvers, we also
measure page load times when using each of these resolvers
on their own for all DNS queries.
1We disabled the DNS cache for dnscrypt-proxy. Firefox maintains its
own in-memory DNS cache, but because each page load was performed
within a separate Docker container and because Firefox clears its cache
upon exit each page load uses clean DNS and HTTP caches .
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(b) Individual resolvers.

Figure 2: Page load times from each vantage point using query dis-
tribution models and individual resolvers.

Figure 2a shows page load times for each query distribu-
tion strategy, and Figure 2b shows page load times for each
resolver. Table 1 and Table 2 show median page load times
for each strategy and resolver. First, for most vantage points,
each strategy performs similarly in terms of median page
load times, although the largest gap in performance was in
Oregon between the hash strategy and round-robin strategy,
with the hash model performing 150 ms slower. The largest
difference between two strategies was lower in other van-
tage points, with 50 ms in California, 10 ms in Ohio, and
110 ms in N. Virginia. Page load times are similar with each
resolver, although Quad9 does perform slower in Oregon.

4.2 Privacy
How Does Query Distribution Affect Domain Names
Seen By Resolvers? We next study how many unique do-
main names are seen by each DNS resolver over time if dif-
ferent query distribution strategies are used. To do so, we

use a real-world dataset of anonymized DNS queries for ap-
proximately 100 homes connected to a fiber-to-the-home
(FTTH) network in a residential neighborhood in Cleveland,
OH [1]. Each home is connected by a gateway device that
proves a single public IP address for each home through
NAT. This dataset consists of queries issued over a seven-
day period each month during 2018 (i.e., 12 weeks). Full de-
tails about the dataset and collection methodology can be
found in Allman et al [1]. We first group the queries that
each source IP address (i.e., each home) issued together. We
then extract the timestamp for each query, ordering each
address’ queries by the time in which they were issued. Fi-
nally, we simulate each of our query distribution strategies
”after the fact” on each address’ ordered list of queries.

Previous work has observed the random and round-robin
distribution strategies may decrease user privacy in the long
term, as all resolvers learn more domain names [2]. Our
work (and system) provides a way to quantify the effects
of both these strategies and other alternatives that may be
designed in the future. For example, other strategies may be
more beneficial for privacy (e.g., hash-based strategies); we
believe it is useful to provide points of comparison.

When the hash strategy is used, each resolver sees fewer
unique domain names for each address than when the other
strategies are used. When four resolvers are used for the
hash strategy, the strategy stabilizes with an average of
≈25% of unique domain names for each address seen by
each resolver. On the other hand, when four resolvers are
used for the random strategy and the round-robin strategy,
the strategies stabilize with an average of ≈50% of queries
seen by each resolver. Interestingly, after just one week, the
random and round-robin strategies stabilize with a mean of
≈45% of unique domain names seen by all four resolvers,
compared to ≈50% after 12 weeks of data. We note that with
the round-robin and random distributions, every resolver
will quickly see popular domain names (e.g., google.com
and facebook.com), but they won’t each see the domain
names that were queried a small number of times. Over time,
each resolvermay see the same domain names, but theymay
not see this data quickly.

5 Conclusion
This paper has argued for a re-decentralization of the

DNS. Users may prefer one distribution strategy over an-
other. In this vein, we believe that this paper lays the ground-
work for much future work in both research and industry, as
we explore various alternative strategies for resolving and
distributing encrypted DNS queries. This paper provides
one such starting point as a proof-of-concept.
Acknowledgments. This work was funded in part by NSF
Award CNS-1953513.

67



Encryption without Centralization ANRW ’21, July 24–30, 2021, Virtual Event, USA

References
[1] Mark Allman. 2020. Putting DNS in Context. In Proceedings of the

2020 Internet Measurement Conference (IMC) (Virtual Event, 2020-10),
Fabián Bustamante and Nick Feamster (Eds.). Associatian for Com-
puting Machinery (ACM). https://dl.acm.org/doi/10.1145/3419394.
3423659

[2] Jari Arkko, Martin Thomson, and Ted Hardie. 2019. Selecting Re-
solvers from a Set of Distributed DNS Resolvers. Internet-Draft draft-
arkko-abcd-distributed-resolver-selection-00. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-arkko-abcd-
distributed-resolver-selection-00 Work in Progress.

[3] Kenji Baheux. 2020. A safer and more private browsing experience with
Secure DNS. https://blog.chromium.org/2020/05/a-safer-and-more-
private-browsing-DoH.html

[4] Kevin Borgolte, Tithi Chattopadhyay, Nick Feamster, Mihir Kshir-
sagar, Jordan Holland, Austin Hounsel, and Paul Schmitt. 2019. How
DNS over HTTPS is Reshaping Privacy, Performance, and Policy in
the Internet Ecosystem. In Proceedings of the Research Conference
on Communications, Information and Internet Policy (48 ed.) (2019-
09). SSRN, Washington DC, USA, 1–9. https://doi.org/10.2139/ssrn.
3427563

[5] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. 2018. Cloud Strife: Mitigating the Security Risks of
Domain-Validated Certificates. In Proceedings of the 25th Network and
Distributed System Security Symposium (NDSS) (25 ed.) (San Diego,
CA, USA, 2018-02), Patrick Traynor and Alina Oprea (Eds.). Internet
Society (ISOC). https://doi.org/10.14722/ndss.2018.23327

[6] Timm Böttger, Felix Cuadrado, Gianni Antichi, Eder Leao Fernan-
des, Gareth Tyson, Ignacio Castro, and Steve Uhlig. 2019. An Em-
pirical Study of the Cost of DNS-over-HTTPS. In Proceedings of the
19th Internet Measurement Conference (IMC) (19 ed.) (2019-10), Phillipa
Gill and Robert Beverly (Eds.). Association for Computing Machin-
ery (ACM), Amsterdam, Netherlands, 15–21. https://doi.org/10.1145/
3355369.3355575

[7] Chromium. 2021. doh_provider_entry.cc: Chromium Code Search.
https://source.chromium.org/chromium/chromium/src/+/master:
net/dns/public/doh_provider_entry.cc

[8] Selena Deckelmann. 2020. Firefox continues push to bring DNS over
HTTPS by default for US users . https://blog.mozilla.org/blog/2020/
02/25/firefox-continues-push-to-bring-dns-over-https-by-default-
for-us-users/

[9] DNSCrypt. 2021. dnscrypt-proxy 2: A flexible DNS proxy, with support
for encrypted DNS protocols. https://github.com/DNSCrypt/dnscrypt-
proxy

[10] DNSCrypt. 2021. dnscrypt-proxy/serversInfo.go. https:
//github.com/DNSCrypt/dnscrypt-proxy/blob/master/dnscrypt-
proxy/serversInfo.go

[11] Pawel Foremski, Oliver Gasser, and Giovane C. M. Moura. 2019. DNS
Observatory: The Big Picture of the DNS. In Proceedings of the 19th In-
ternet Measurement Conference (IMC) (Amsterdam, The Netherlands,
2019-10), Phillipa Gill and Robert Beverly (Eds.). Association for Com-
puting Machinery (ACM). https://doi.org/10.1145/3355369.3355566

[12] Nguyen Phong Hoang, Ivan Lin, Seyedhamed Ghavamnia, and
Michalis Polychronakis. 2020. K-resolver: Towards Decentralizing
Encrypted DNS Resolution. In Proceedings of The NDSS Workshop on
Measurements, Attacks, and Defenses for the Web 2020 (San Diego, CA,
USA) (MADWeb ’20). Internet Society, 7 pages. https://doi.org/10.
14722/madweb.2020.23009

[13] Paul Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS
(DoH). RFC 8484. RFC Editor. https://www.ietf.org/rfc/rfc8484.txt
(Proposed Standard).

[14] Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and
Nick Feamster. 2020. Comparing the Effects of DNS, DoT, and DoH
on Web Performance. In Proceedings of The Web Conference 2020. 562–
572.

[15] HTTP Archive. 2021. HTTP Archive. https://httparchive.org/
[16] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessel,

and Paul Hoffman. 2016. Specification for DNS over Transport Layer Se-
curity (TLS). RFC 7858. RFC Editor. https://www.ietf.org/rfc/rfc7858.
txt (Proposed Standard).

[17] Tommy Jensen, Ivan Pashov, and Gabriel Montenegro. 2019. Win-
dows will improve user privacy with DNS over HTTPS. https:
//techcommunity.microsoft.com/t5/networking-blog/windows-will-
improve-user-privacy-with-dns-over-https/ba-p/1014229

[18] Erik Kline and Ben Schwartz. 2018. DNS-over-TLS Support in Android
P. https://android-developers.googleblog.com/2018/04/dns-over-tls-
support-in-android-p.html

[19] Victor L. Pochat, Tom V. Goethem, Samaneh Tajalizadehkhoob, Ma-
ciej Korczyński, and Wouter Joosen. 2019. Tranco: A Research-
Oriented Top Sites Ranking Hardened Against Manipulation. In Pro-
ceedings of the 26th Network and Distributed System Security Sympo-
sium (NDSS) (26 ed.) (San Diego, CA, USA, 2019-02), Alina Oprea and
Dongyan Xu (Eds.). Internet Society (ISOC). https://doi.org/10.14722/
ndss.2019.23386

[20] Patrick McManus. 2018. Improving DNS Privacy in Firefox.
https://blog.nightly.mozilla.org/2018/06/01/improving-dns-privacy-
in-firefox/

[21] Giovane CM Moura, Sebastian Castro, Wes Hardaker, Maarten
Wullink, and Cristian Hesselman. 2020. Clouding up the Internet:
how centralized is DNS traffic becoming?. In Proceedings of the 2020 In-
ternet Measurement Conference (IMC) (Virtual Event, 2020-10), Fabián
Bustamante and Nick Feamster (Eds.). Association for ComputingMa-
chinery (ACM). https://doi.org/10.1145/3419394.3423625

[22] Nicole Perlroth. 2016. Hackers Used New Weapons to Disrupt Major
Websites Across U.S. https://www.nytimes.com/2016/10/22/business/
internet-problems-attack.html

[23] Paul Vixie. 2019. My Chromecast Ultra Would Not Start Until I Be-
gan Answering 8.8.8.8. https://mailarchive.ietf.org/arch/msg/dnsop/
WCVv57IizUSjNb2RQNP84fBclI0/

[24] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin,
and Nikita Somaiya. 2015. Connection-oriented DNS to Improve Pri-
vacy and Security. In Proceedings of the 36th IEEE Symposium on Se-
curity & Privacy (S&P) (36 ed.) (San Jose, CA, USA, 2015-05), Vitaly
Shmatikov and Lujo Bauer (Eds.). Institute of Electrical and Electron-
ics Engineers (IEEE). https://doi.org/10.1109/sp.2015.18

68

https://dl.acm.org/doi/10.1145/3419394.3423659
https://dl.acm.org/doi/10.1145/3419394.3423659
https://datatracker.ietf.org/doc/html/draft-arkko-abcd-distributed-resolver-selection-00
https://datatracker.ietf.org/doc/html/draft-arkko-abcd-distributed-resolver-selection-00
https://blog.chromium.org/2020/05/a-safer-and-more-private-browsing-DoH.html
https://blog.chromium.org/2020/05/a-safer-and-more-private-browsing-DoH.html
https://doi.org/10.2139/ssrn.3427563
https://doi.org/10.2139/ssrn.3427563
https://doi.org/10.14722/ndss.2018.23327
https://doi.org/10.1145/3355369.3355575
https://doi.org/10.1145/3355369.3355575
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/public/doh_provider_entry.cc
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/public/doh_provider_entry.cc
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://github.com/DNSCrypt/dnscrypt-proxy
https://github.com/DNSCrypt/dnscrypt-proxy
https://github.com/DNSCrypt/dnscrypt-proxy/blob/master/dnscrypt-proxy/serversInfo.go
https://github.com/DNSCrypt/dnscrypt-proxy/blob/master/dnscrypt-proxy/serversInfo.go
https://github.com/DNSCrypt/dnscrypt-proxy/blob/master/dnscrypt-proxy/serversInfo.go
https://doi.org/10.1145/3355369.3355566
https://doi.org/10.14722/madweb.2020.23009
https://doi.org/10.14722/madweb.2020.23009
https://www.ietf.org/rfc/rfc8484.txt
https://httparchive.org/
https://www.ietf.org/rfc/rfc7858.txt
https://www.ietf.org/rfc/rfc7858.txt
https://techcommunity.microsoft.com/t5/networking-blog/windows-will-improve-user-privacy-with-dns-over-https/ba-p/1014229
https://techcommunity.microsoft.com/t5/networking-blog/windows-will-improve-user-privacy-with-dns-over-https/ba-p/1014229
https://techcommunity.microsoft.com/t5/networking-blog/windows-will-improve-user-privacy-with-dns-over-https/ba-p/1014229
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://blog.nightly.mozilla.org/2018/06/01/improving-dns-privacy-in-firefox/
https://blog.nightly.mozilla.org/2018/06/01/improving-dns-privacy-in-firefox/
https://doi.org/10.1145/3419394.3423625
https://www.nytimes.com/2016/10/22/business/internet-problems-attack.html
https://www.nytimes.com/2016/10/22/business/internet-problems-attack.html
https://mailarchive.ietf.org/arch/msg/dnsop/WCVv57IizUSjNb2RQNP84fBclI0/
https://mailarchive.ietf.org/arch/msg/dnsop/WCVv57IizUSjNb2RQNP84fBclI0/
https://doi.org/10.1109/sp.2015.18

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Encrypted DNS Protocols
	2.2 DNS Centralization

	3 System Design and Implementation
	3.1 Overview
	3.2 Design Principles
	3.3 Prototype Implementation
	3.4 Distributing DNS Queries

	4 Prototype Evaluation
	4.1 Performance Effects
	4.2 Privacy

	5 Conclusion
	References

